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Abstract—Deep-learning-based video processing has yielded
transformative results in recent years. However, the video analyt-
ics pipeline is energy-intensive due to high data rates and reliance
on complex inference algorithms, which limits its adoption in
energy-constrained applications. Motivated by the observation of
high and variable spatial redundancy and temporal dynamics in
video data streams, we design and evaluate an adaptive-resolution
optimization framework to minimize the energy use of multi-
task video analytics pipelines. Instead of heuristically tuning
the input data resolution of individual tasks, our framework
utilizes deep reinforcement learning to dynamically govern the
input resolution and computation of the entire video analytics
pipeline. By monitoring the impact of varying resolution on
the quality of high-dimensional video analytics features, hence
the accuracy of video analytics results, the proposed end-to-end
optimization framework learns the best non-myopic policy for
dynamically controlling the resolution of input video streams to
globally optimize energy efficiency. Governed by reinforcement
learning, optical flow is incorporated into the framework to
minimize unnecessary spatio-temporal redundancy that leads
to re-computation, while preserving accuracy. The proposed
framework is applied to video instance segmentation which is one
of the most challenging computer vision tasks, and achieves better
energy efficiency than all baseline methods of similar accuracy
on the YouTube-VIS dataset.

Index Terms—energy-efficient, vision, multi-task application,
reinforcement learning

I. INTRODUCTION

Deep learning has achieved great success on video-based
computer vision tasks [1], [2], [3]. Deep models such as
MaskTrack R-CNN [2] are widely employed for multi-task
video analytics, such as object detection, object classification,
and segmentation. Deep models are generally energy-intensive
due to the high amount of video stream data to process, which
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constrains their adoption in energy-constrained scenarios such
as edge computing [4]. However, the ability to perform in-
telligent video analytics in energy-constrained edge devices is
becoming increasingly important with the fast expansion of
intelligent Internet-of-Things [4], [5]. There is an urgent need
for energy-efficient multi-task video analytics.

This work aims to optimize the energy efficiency of video
analytics tasks using a variable-resolution strategy. This is
inspired by the observation that abundant data redundancy
potentially exists in multi-task video analytics applications. As
illustrated in Fig. 1, this enables two widely used computer
vision tasks, i.e., object detection and semantic segmentation,
to optimize efficiency while maintaining acceptable accuracy
across a wide range of data resolutions. Real-world data re-
dundancy offers us opportunities to optimize energy efficiency
via variable-resolution analysis.

Fig. 1: Object detection and segmentation results of a sample input
image with different resolutions: The red/blue/yellow edges indicate
the results of the same image with resolution W ∗H , W

2
∗ H

2
, and

W
4
∗ H

4
. We can see that the detection and segmentation results are

very similar for the three resolutions, and the general performance is
acceptable across different resolution settings.

Learning appropriate frame resolutions for multi-task video
analytics is a challenging problem as appropriate resolutions
may vary across different tasks, different scenarios, etc. For
instance, as shown in Fig. 2, a Deep Neural Network (DNN)
may still work well on object detection with low-resolution
images, but it cannot properly address the semantic segmenta-
tion, which is more sensitive to resolution. Another example
is shown in Fig. 3: even for the same task, i.e., face detection
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shown in Fig. 3, it is still difficult to find appropriate frame
resolutions due to the varying frame analysis difficulty. We
aim to make online decisions on frame resolutions that can
lead to globally optimized energy efficiency.

Fig. 2: Object detection and segmentation results for a low-resolution
frame: the bounding boxes of the detection task are still accurate,
while the predicted segmentation mask becomes less accurate with
unsatisfying visual qualities. Different tasks may require different
resolutions to produce adequate results.

Fig. 3: For two facial images with identical low resolutions, face
detection accuracy may be adequate on one (Left Column) and fail
on another (Right Column). This indicates that even for the same
video analytics task, the suitable frame resolutions vary with frame
analysis difficulty.

The complicated temporal dynamics of video streams also
pose a challenge. Reducing resolution has the potential to re-
duce accuracy. However, such accuracy loss can be effectively
compensated for by an estimator that is aware of the historical
temporal information in video streams. As shown in Fig. 4,
our estimator incorporates historical information from earlier,

high-resolution frames to generate more robust and more
accurate predictions, despite that the low-resolution current
frame can be misleading to DNN models. Therefore, accurate
estimation requires the online analysis of video temporal
changes.

In this paper, we propose to use reinforcement learning
(RL) to holistically overcome these challenges: (1) complexity
variations among different tasks, (2) variable difficulty of
different samples, and (3) complicated temporal dynamics. To
globally optimize energy efficiency, our RL network learns the
best non-myopic policy for determining the spatio-temporal
frame resolution of incoming video stream data. Compared
with other energy-efficient single-task video analytics solu-
tions [6], [7] that were designed for still images without
utilizing temporal information, our work is the first to address
the energy consumption optimization problem for multi-task
video analytic pipeline, and it is also the first to leverage RL
to holistically tackle all these challenges indicated above, and
to do end-to-end global efficiency policy optimization.

Our analysis pipeline is illustrated in Fig. 5. Frame images
have variable resolution (e.g., W

2 ∗
H
2 , W

4 ∗
H
4 and W

8 ∗
H
8

, and denoted as non-key frames), or remain unchanged
(key frames with resolution W ∗ H). To leverage temporal
information and compensate for performance reduction with
lower resolution, we incorporate contextual optical flow [8]
for feature estimation as suggested by Zhu et al. [9]. The
energy optimization problem, specifically, determining frame
resolutions with respect to multiple tasks and temporal dy-
namics, is considered as an end-to-end optimization problem
and is modeled as a Markov Decision Process (MDP), which
is solved using RL [10].

To evaluate the proposed framework, we have applied it to
video instance segmentation [2], a synthesis video analytics
pipeline consisting of simultaneous detection, segmentation,
and tracking of object instances. Video instance segmentation
is considered one of the most challenging multi-task video
analytics applications, as it requires the predictions of instance-
level segmentation masks while simultaneously tracking and
identifying each instance. Our experimental results on the
YouTube-VIS dataset [2] indicate that our proposed solution
is more energy efficient than all baseline methods.

In summary, this work makes the following contributions:
1) This work presents an adaptive-resolution framework

for multi-task video analytics in energy-constrained sce-
narios. The resulting challenges are managed by Rein-
forcement Learning (RL) algorithms aiming to globally
optimize energy efficiency. To the best of our knowl-
edge, this is the first time that RL has been employed to
learn a non-myopic policy for such an energy-efficient
framework.

2) We have applied the proposed framework to video
instance segmentation [2], one of the most challeng-
ing multi-task computer vision tasks. Our framework
is significantly more energy efficient than all baseline
methods of similar accuracy.

The rest of this paper is organized as follows. Section II
surveys related work. Section III analyzes the spatio-temporal
data redundancy in video stream. Section IV characterizes
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Fig. 4: An illustration of the temporal estimation mechanism for the semantic segmentation task. Without estimation, a low resolution frame
(e.g., T in the figure) may lack important semantic information and can lead to low-quality segmentation masks. However, we can compensate
by exploiting spatio-temporal redundancy to estimate the missing high-resolution information (e.g., T-10 in the figure), which can produce
segmentation results with high visual quality.

Fig. 5: An illustration of the proposed framework where video frames are shown in every 5 frames. (a) Common fixed-resolution frames in
multi-task video analytics pipeline. (b) The proposed adaptive-resolution multi-task video analytics pipeline.

the energy consumption of imaging systems. Section V pro-
vides the problem definition. Section VI describes the energy-
efficient framework. Section VII presents experimental results.
Section VIII concludes this work.

II. RELATED WORK

The most relevant works are those on energy-efficient
computer vision and feature propagation with optical flows.

Energy-Efficient Computer Vision: Kulkarni et al. pro-
posed to optimize energy efficiency by varying frame res-
olution in a multi-camera surveillance network [11], which
significantly reduced energy usage (85% or more) while
providing comparable reliability. LiKamWa et al. proposed a
power model based only on hardware [12]. This model reduces
power consumption by 30% for video capturing by optimizing
camera clock frequency. Based on the power model proposed
in [12], Lubana et al. analyzed sensing energy and described
the energy model for imaging systems [6]. This work indicated
that system energy consumption depends significantly on the

transferred resolutions in imaging systems, and thus they
optimized energy usage by using a multi-phase capture-and-
analysis approach in which low-resolution, wide-area cap-
tures are used to guide high-resolution, narrow captures, thus
eliminating task-irrelevant image data capture, transfer, and
analysis. Later, Lubana et al. [7] described an application-
aware compressive sensing framework, which reduces channel
bandwidth requirements and signal communication latency
without substantial performance drop by reducing unimportant
data (i.e., pixels) transmission and analysis, thereby com-
pressing application-related data representation. Additionally,
a two-stage variable-resolution solution is proposed by Wang
et al. [13], which implemented object detection using low-
resolution images and recognition using high-resolution im-
ages. Their experimental results demonstrated that the reso-
lution can be reduced by 51.4% with comparable recognition
accuracy. Feng et al. proposed to detect and track moving
objects in video to reduce the data volume in video-based
computer vision applications [14].
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Our method differs from the prior works in two ways: (1) we
consider the complicated temporal dynamics in video streams
and leverage a temporal bypassing system to better estimate
high-resolution spatial information and (2) our work is end-to-
end, considering all the challenging factors in multi-task video
analytics (e.g., the complexity variations among different tasks
and spatial and temporal dynamics in video data) as a complete
system using RL to optimize the energy efficiency of the entire
multi-task video analytics pipeline.

Feature Propagation Methods: Zhu et al. [9] presented a
Deep Feature Flow (DFF) method that propagates the inter-
mediate features between video frames via optical flow [15].
DFF accelerates the video analytics pipeline by using efficient
optical flow calculation instead of computation-intensive fea-
ture extraction with backbone networks. Their work schedules
the key frames at a fixed interval. In contrast, Wang et
al. [16] presented a more flexible key-frame scheduler to
accelerate semantic segmentation [17], [18], [19] in videos
while preserving the segmentation accuracy. They modeled the
key decision process as a deep RL problem and learned an
efficient scheduling policy by maximizing the global return,
hence the global performance.

Xu et al. demonstrated a dynamic video segmentation
network (DVSNet) for fast and efficient video semantic seg-
mentation [20]. They designed a light-weight decision net to
determine whether the current frame is sent to the fast warping
path or the computational-intensive segmentation path. Xu et
al. [20] considered deviations from the current frame and the
last key frame to judge whether it is appropriate to schedule
a key frame.

In contrast with prior work focusing on single-computer
vision tasks, we tackle the more challenging multi-task video
analytics problem and use feature propagation with the op-
tical flow to exploit temporal redundancy to estimate high-
resolution spatial information. This is controlled by RL-based
policy network, concurrently with other challenging compo-
nents.

III. DATA REDUNDANCY ANALYSIS

Video data are inherently redundant, both spatially and
temporally. In this section, we characterize data redundancy
in video data at different resolutions, and demonstrate that
it is possible to reduce resolution to reduce data redundancy,
thereby improving energy efficiency while maintaining accept-
able task performance.

A. Redundancy Analysis

We first analyze spatial data redundancy by varying frame
resolution and evaluating the resulting impact on performance
of video analytics tasks. We consider two commonly used
computer vision tasks: face detection with still images and
video-based object detection. For each task, we uniformly
subsample the original image/video frames at several reduced
resolutions and determine the resulting accuracy. The down-
sampling factor is defined as the ratio of resized image pixels
to original image pixels. For face detection, we evaluate the

performance of the S3FD architecture [21] on the WIDER-
FACE [22] dataset. For video-based object detection, we evalu-
ate the performance of the MaskTrack R-CNN architecture for
object detection on the YouTube-VIS dataset [2]. Since both
are detection tasks, mean Average Precision (mAP) is used
to quantify performance. We use COCO evaluation metrics1

to average 10 Intersection over Union (IoU) thresholds from
50% to 95% in 5% intervals. Note that the WIDERFACE
dataset divides the samples into three difficulty categories:
easy, medium, and hard, which are plotted separately.

As demonstrated in Fig. 6a and Fig. 6b, the task per-
formance (mAP) degrades gracefully with the decrease in
resolution. For instance, when the resolution downsampling
ratio is greater than 0.3 (30% of the original pixels), the
performance degradation remains insignificant (e.g., 0.4% for
the medium data). In short, discarding 70% of the original
data greatly improves energy consumption with little impact
on accuracy. In addition, Fig. 6a demonstrates that, for the
easy data set, the task performance remains acceptable until
the resolution reduces to approximately 0.1 (i.e., 10% of
the original pixels), while the accuracy of the hard data set
deteriorates significantly as the resolution approaches 0.5. This
study demonstrates that it is possible to apply spatial resolution
reduction with limited impact on performance, yet it remains a
challenge to determine the appropriate resolution for individual
frames with varying difficulties.

B. Dynamics Analysis

Consecutive video frames generally share a large fraction
of similar pixels, which can lead to high temporal redundancy
in video stream data. Fig. 7 shows one such example. It is
unnecessary to re-compute the whole current frame given that
we have already obtained the features of previous frames:
we can use the features in the previous frames to accelerate
the analysis of the current frame. Such techniques have been
studied in the field of video segmentation, and we have
adopted the Deep Feature Flow [9] framework following [20],
[16] to address temporal redundancy. Specifically, if a current
frame is determined as a non-key frame with low resolution,
we use FlowNet [8] to obtain the optical flow between the
current frame and the last key frame, and the computed optical
flow is used to propagate features from the last key frame into
the current one such that the performance drop caused by low-
resolution frames can be compensated for. More details can
be found in Section VI.

To demonstrate the effectiveness of using Deep Feature
Flow [9] to exploit the temporal redundancy, we integrate
FlowNetC [8] into the MaskTrack R-CNN model and evaluate
its performance on object detection and instance segmentation
tasks using the YouTube-VIS dataset. As shown in Fig. 8a, the
performance of a solo MaskTrack R-CNN model for object
detection drops significantly when the downsampling ratio is
extremely low (e.g., lower than 0.15). However, when optical
flow has been integrated (“MaskTrack R-CNN+FlowNetC” in
Fig. 8a), the resulting model can be much more tolerant to

1https://github.com/cocodataset/cocoapi
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(a) Face detection using the S3FD method on the WIDERFACE dataset. (b) Object detection using MaskTrack R-CNN method on YouTube-VIS dataset.

Fig. 6: Resolution versus mAP on different tasks.

downsampling, demonstrating the importance of using tem-
poral information to eliminate spatio-temporal redundancy in
video stream. A similar trend can be observed in Fig. 8b
for the instance segmentation task. As a result, we utilize
MaskTrack R-CNN+FlowNet for the non-key frames with
lower resolutions, while for key frames, we use the MaskTrack
R-CNN model, which performs better performance on high-
resolution images.

When bypassing temporal information, we can also elimi-
nate a lot of temporal redundancy while retaining acceptable
performance, which further demonstrates the feasibility of the
adaptive resolution strategy. However, the temporal dynamics
in video stream data are usually complicated and therefore
difficult to analyze, highlighting the challenges of obtaining
suitable frame resolutions. These observations motivated us to
develop the RL-based optimization framework.

IV. ENERGY CONSUMPTION ANALYSIS

In this section, we first characterize the energy consumption
of imaging systems. Then, we demonstrate that the amount of
energy consumption is highly related to the volume of input
data.

A. Conventional Image Analysis Framework
A typical imaging pipeline starts with an image sensor

that captures and converts the incoming light into electrical
signals via a 2-D sensor array, and transfers the signals in
the form of data frames to an image signal processor (ISP)
and an application processor for digital signal processing
and computer vision tasks [6]. Prior work indicates that data
transfer, digital signal processing, and computer vision tasks
account for more than 90% of the total energy [7], which
depends strongly on the amount of data.

B. Energy Model
The energy consumption, E, of an imaging system (per

frame) is mainly due to data sensing, communication, and
computation [6], as follows:

E = Esensor + EISP + Ehost + Ecomm , (1)

where Esensor , EISP , Ehost , and Ecomm denote the energy
consumption of image sensor, ISP, host application processor,
and the communication interface between the sensor and
ISP/application processor, respectively.

(1) Energy consumption of image sensing. The energy
consumption of an image sensor is state-dependent (e.g., idle,
active, and standby). In the exposure phase (Texp), the image
sensor is idle with power Psensor ,idle . In the active phase
(Tactive ), the image sensor processes and outputs pixels, with
one pixel per clock period [6]. The time duration Tactive is
therefore determined by the ratio of image frame resolution
Rframe to external clock frequency f , and the power con-
sumption of the active state Psensor,active is a linear function
of sensor resolution R (R ≥ Rframe ). The image sensor
consumes negligible power in standby mode [12] (0.5–1.5 mW,
typically) so no corresponding term is required in the energy
model. Sensor energy is calculated as follows:

Esensor = Psensor ,activeTactive + Psensor ,idleTexp , (2)

where R and Psensor ,idle are sensor-specific parameters.
(2) Energy consumption of the ISP. The ISP is active

during image processing (TISP ), and idle during image sensing
(Texp+Rframe/f ) and other computer vision tasks (Tapp) [6]:

EISP = PISP,activeTISP+PISP,idle(Texp+Rframe/f+Tapp),
(3)

where PISP,idle and PISP,active are the idle and active power
of the ISP, respectively. Prior work has shown that TISP is a
nearly linear function of image resolution, and Tapp is also
strongly dependent on image resolution [6]. Therefore, the
energy consumption of the ISP depends strongly on image
resolution.

(3) Energy consumption of application processor. The
host application processor is active during computer vision
task processing and idle otherwise [6]:

Ehost = Phost,activeTapp+Phost,idle(Texp+Rframe/f+TISP ),
(4)

where Phost,active and Phost,idle are processor-dependent.
Equation 4 also suggests that the energy usage of computer
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Fig. 7: Comparison of two frames at timestamps t and t+ 1 in a video sequence. Left and Middle: Two consecutive video frames selected
from the Youtube-VIS dataset. Right: Difference between the two frames. The dashed and solid red rectangles highlight the different parts,
and we can see that those two frames share a large proportion of similar pixels.

(a) Object detection (b) Instance segmentation

Fig. 8: mAP of MaskTrack R-CNN without and with FlowNetC (i.e., temporal bypassing with optical flow) on the YouTube-VIS dataset.

vision tasks strongly depends on image resolution.
(4) Energy consumption of communication interface.

Ecomm is a linear function of the total amount of data
transferred (in pixels) [6], which is defined in Equation 5.

Ecomm = k ·Rframe , (5)

where k is a communication interface specific constant.
Equations 1–5 demonstrate that the energy consumption of

an imaging system is a strong function of image resolution,
specifically, spatial resolution and frame rate. Therefore, data
reduction offers the most promising first-line treatment for
imaging system energy optimization. However, data reduction
may negatively affect video analytics accuracy, which moti-
vates the following study on data redundancy and the impact
on video analytics accuracy.

V. PROBLEM DEFINITION

The energy model in Section IV demonstrates that it is fea-
sible to improve energy efficiency by reducing frame resolu-
tions. In Section III, we illustrate that the strategy of adopting
reasonably low-resolution frames can be potentially applied to
energy-constrained scenarios, since it can effectively reduce
the spatial and temporal data redundancy while preserving
acceptable accuracy.

However, determining a suitable resolution for each video
frame in the multi-task video analytic pipeline is challenging,
as we need to consider (1) varying difficulties in different
frames, (2) varying task complexities, and (3) complicated
temporal dynamics in the video stream. If we fail to consider

any of these, we may end up with resolution decisions that
will lead to unsatisfying energy consumption efficiency.

We have developed a holistic approach that simultaneously
considers these factors in an end-to-end fashion. Specifically,
we formulate the process of estimating the energy-optimal
frame resolutions as a Markov Decision Process (MDP), which
is explained below.

A. Cumulative Reward

Let A = {a1, a2, ..., an} be the set of n potential actions
where each action represents using a certain frame resolution,
e.g., 1/4 of the original size. We denote the policy of de-
termining frame resolutions as π. Let st be the state to be
considered by π at time step t, and let at ∈ A be the decision
on the tth frame’s resolution, i.e., at = π(st). Let ACCat be
the performance with a certain metric achieved by decision at
on that frame, and let Eat be the energy consumption of that
decision. we can define the reward rt at this time step as

rt = ACCat + λ
1

Eat
, (6)

where λ is a hyper-parameter to trade off accuracy ACCat
and energy consumption Eat . A larger rt is generally more
desirable. For a video sequence of length m, our goal is
to learn an optimal policy π for maximizing the cumulative
rewards G that can be written as

G =

m∑
t=1

γt−1rt =

m∑
t=1

γt−1
(
ACCat + λ

1

Eat

)
, (7)
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where γt−1 ∈ [0, 1] and at = π(st). However, it is difficult to
determine a non-myopic policy π for realistic video analytics
applications. In this paper, we adopt RL to maximize Equation
7, which is described in detail in Section VI.

B. Video Instance Segmentation

For evaluation purposes, we select video instance segmenta-
tion [2], a synthesis and challenging multi-task video analytics
pipeline that has broad application scenarios. Specifically,
instance segmentation consists of three major targets: (1)
object detection to localize all objects in video frames; (2)
object classification to assign category labels to the detected
objects; and (3) instance segmentation to perform pixel-level
classification for each instance. For video-based instance seg-
mentation, an additional task named object tracking is defined
in [2], which traces the object trajectory in video sequences.
The YouTube-VIS [2] dataset is widely used for video instance
segmentation task evaluation; We use it for evaluation.

MaskTrack R-CNN [2], a variant of Mask R-CNN [1], is
used as a baseline method for video instance segmentation.
Fig. 9 illustrates the video instance segmentation framework
based on MaskTrack R-CNN [2]. An input image of arbitrary
size is first fed into the backbone network (or feature extractor)
to obtain appropriate feature descriptors, and then a Region
Proposal Network (RPN) [23] is leveraged to generate several
potential Regions of Interest (RoIs) on those descriptors. RoI
align [1] is utilized to convert each RoI candidate with variable
size into fixed-size feature maps, e.g., 7 × 7. After that,
those fixed-size feature maps are fed into three branches of
networks (referred to as “heads” [1]): (1) a Fully Connected
(FC) network head to localize instances with bounding boxes
and perform classifications; (2) a Fully Convolutional Network
(FCN) to predict segmentation masks for each instance; and
(3) a tracking network head for tracking instances in a video
sequence. Note that the tracking head is not included in the
original Mask R-CNN framework [1] and is inserted by Yang
et al. [2] to meet the need of video instance segmentation
tasks. For a fair comparison, we use this MaskTrack R-CNN
model as the baseline method in this work.

VI. METHODOLOGY

This section describes our reinforcement-learning-based
adaptive-resolution framework for video instance segmentation
in detail.

A. Framework Overview

As described in Section V, our goal is to develop an
adaptive-resolution multi-task video analytics framework that
optimizes energy consumption and accuracy. We model the
adaptive resolution selection problem as an MDP. To maximize
the cumulative reward G in Equation 7, we use RL to dynam-
ically govern the spatial resolution and temporal dynamics of
the complete video instance segmentation pipeline.

Let I = {I1, I2, ..., Im} be a video sequence of length m,
where It denotes the frame image at time step t ∈ Z∩ [1,m].
For a frame image It of resolution wt ∗ ht, where wt and

ht refer to its width and height, respectively, we define the
action set A = {a1, a2, . . . , ak}, where a1 stands for using its
original frame size wt ∗ ht. a2, . . . , ak refer to downsampling
It to a lower resolution, e.g., wt

2 ∗
ht

2 , wt

4 ∗
ht

4 and wt

8 ∗
ht

8 .
We denote the frame where action a1 is used (i.e., without
downsizing the frame image) as the key frame and others as
the non-key frames. Therefore, our goal is to find a policy
network πθ that can map the state st at each time step
t to an appropriate action at to maximize the cumulative
reward G described in Equation 7. The RL with Double Q-
learning (DDQN) [24] is used for optimization. Although
various computer vision problems can be solved using this
framework, we focus on video instance segmentation.

Specifically, given an incoming frame It at time step t, video
instance segmentation performs the following prediction tasks:
(1) bounding box prediction bt, (2) object classification ct,
(3) segmentation mask st, and (4) tracking prediction dt. We
follow the MaskTrack R-CNN approach [2] to perform these
predictions with several modifications. The first step is to use a
feature extractor denoted as Nfeat to extract representative fea-
ture descriptors ft, i.e., ft = Nfeat(It). After that, a Regional
Proposal Network (RPN)NRPN and a RoI Align operation [1]
RoIAlign are applied to obtain RoI features f ′t with identical
sizes, i.e., f ′t = RoIAlign(NRPN (ft)). f ′t is then fed into
three task-related branches (i.e., heads): (1) the Bounding
Boxes Head (BBbox Head) Nbbox; (2) the Segmentation Head
Nmask; and (3) the Tracking Head Ntrack. These three heads
generate the required predictions, i.e., {bt, ct} = Nbbox(f ′t),
st = Nmask(f ′t) and dt = Ntrack(f ′t). To evaluate the overall
performance on frame It, we use the metric described by Yang
et al. [2]: the mAP score integrating the performance of all four
predictions. mAP is higher for more similar bounding boxes.
This MaskTrack R-CNN pipeline is illustrated in Fig. 9.

Following the idea of Deep Feature Flow [9], we also
integrate the FlowNet [15] architecture into the MaskTrack
R-CNN framework for temporal information inference. Let
F be the FlowNet model, and let Ik be the last key frame
(ak = a1) where the feature descriptor fk is already computed.
If the current frame It is determined to be a non-key frame,
i.e., at 6= a1, we use F to estimate the optical flow from
Ik to It denoted as OFk→t, i.e., OFk→t = F(It, Ik),
and the feature descriptor ft is calculated as follows: ft =
W(OFk→t, fk,Sk→t), where W is a warping function and
Sk→t is the scale field from Ik to It. Zhu et al. [9] give details
on the warping function and scale field. If It is determined
to be a key frame (ak = a1), ft will be obtained from
the feature extractor Nfeat . The main advantage of using
optical flow for non-key frames is that it can compensate for
accuracy reductions due to downsampling, as demonstrated
in Section III. We refer to the MaskTrack R-CNN + FlowNet
architecture as MaskTrackFlow R-CNN, and Fig. 10 illustrates
the structure of our MaskTrackFlow R-CNN.

Building on the MaskTrackFlow R-CNN, we design a
reinforcement-based policy network πθ with parameters θ to
learn appropriate actions at such that the cumulative reward
G in Equation 7 can be maximized, as explained below.
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Fig. 9: Video instance segmentation pipeline based on the MaskTrack R-CNN framework.

Fig. 10: Flowchart of the proposed MaskTrackFlow R-CNN. We use a policy network πθ to govern the complete system. For each frame
It, this policy network πθ determines an appropriate action from the action set A that aims to maximize the global objective function. If a
non-key action (a2, a3 or a4) is selected, the optical flow between the last key frame Ik and the current frame It will be used to estimate
high resolution information using temporal redundancy. In effect, this propagates key features from fk to ft to maintain accuracy in the
presence of downsampling. Here, fk = Nfeat(Ik), and ft represents the features of the current frame. If πθ opts for a key action (a1), ft
(feature of current frame) will be obtained directly from Nfeat , i.e., ft = Nfeat(It).

B. Policy Network

For a video frame It of resolution wt∗ht, our policy network
πθ gathers useful information at time step t and uses it as
the state st to determine an appropriate action at ∈ A. As
indicated in Section VI-A, we define the action space A as

A = {a1, a2, a3, a4}, (8)

where a1 refers to using original frame resolution wt ∗ ht,
a2, a3 and a4 stand for resizing the frame image to lower
resolution settings (e.g., wt

2 ∗
ht

2 , wt

4 ∗
ht

4 and wt

8 ∗
ht

8 ). Let
Iatt be the frame image after applying action at, we define the
state st as

st = {fa
4

t , fk − fa
4

t , ξ}, (9)

where fa
4

t = Nfeat(I
a4

t ) represents the feature descriptor for
Ia

4

t , fk is the feature descriptor for the last key frame Ik
(ak = a1) that was already computed, and ξ is the summary
information for historical resolution decisions. Intuitively, the
first two terms fa

4

t and fk − fa
4

t provide the necessary spatial
and temporal information for making resolution decisions, and
the last term ξ informs the policy network πθ of the historical
decisions. Since the spatial resolution of fk and fa

4

t are not
identical, we resize fa

4

t to the shape of fk through bi-linear
interpolation such that fk − fa

4

t can be implemented and also
to avoid information loss in fk of larger size.

The policy network πθ contains one convolution layer
(Conv0) and four fully connected (FC) layers: FC0, FC1,
FC2, and FC3, as illustrated in Fig. 11. The tensor fa

4

t (256
channels) is concatenated with tensor fk − fa

4

t (256 channels)
as the input to the first 1*1 convolution layer (Conv0) with 256
output channels. The input channels are squeezed gradually
from FC0 to FC2 layers, which are 15,360, 4,096 and 1,024
channels. Following Wang et al. [16], we append the decision
history ξ to the input tensor of the FC3 layer, while ξ depends
on two terms: a vector with 20 channels containing the last
10 resolution decisions (we use two binary digits to encode
a decision since we have a total of four actions here), and
a scalar denoting the distance of the current t-th frame from
the last key frame (i.e., action is a1). Appending ξ increases
the input channels of the FC3 layer from 256 to 277, which
are summarized into four estimated Q values, i.e., Q(st, a

i)
(i = 1, . . . , 4). Equation 10 defines how to estimate the Q
values.

Qπ(s, a) = E[Gt|st = s, at = a]. (10)

For video instance segmentation, however, a more task-
specific reward function than Equation 6 needs to be defined.
We define the reward rat of an action at on frame It as

rat =

{
λ 1
Eat

+ C0 at = a1

Uat − U targmaxx Ut
x
+ λ 1

Eat
+ C0 at 6= a1

, (11)
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Fig. 11: The architecture of the policy network πθ that determines an appropriate resolution (based on which action to take) for each frame It.
The input tensor consists of two parts: (1) the feature descriptor fa

4

t obtained from the resized frame Ia
4

t , and (2) the tensor fk − fa
4

t which
is the element-wise difference between the key feature fk and the first component fa

4

t . The historical decision information ξ is concatenated
to the last fully connected layer (FC3). The output of πθ is a tensor with four channels. Each channel contains a Q value, and each Q value
corresponds to taking a certain action in the action set A. We select the action with the largest Q value as the action to take.

where Eat is the energy consumption of action at, Uat is the
mAP score for the video instance segmentation task achieved
on the frame It by action at, and U targmaxx Ut

x
is the highest

potential mAP on this time step, which is typically obtained
when at = a1. C0 is a positive constant added to ensure rat ≥
0.

Additionally, let P be the total number of episodes in the
training process, and let T be the maximum time steps in
one episode, we can see that the computational complexity of
DDQN is O(mTP ), since the agent needs to determine one
action (with the maximum Q value) from m actions at each
time step, while there can be a maximum of TP time steps
during the training process.

The algorithm for the proposed reinforcement-learning-
based energy-efficient framework is described in Algorithm 1.

VII. EXPERIMENTS AND RESULTS

This section describes the experimental evaluation of the
proposed energy-efficient video analytics pipeline.

A. Dataset

We use the YouTube-VIS dataset2 [2] to evaluate the per-
formance of our framework. This dataset consists of 2,883
videos, a 40-category label set and 131k instance masks, while
the train/validation/test sets contain 2,238/302/343 videos,
respectively. The 5th frame for each video snippet is anno-
tated. Each video snippet lasts 3 to 6 seconds with a 30 fps
frame rate. The maximum resolution of the original frame
is 1, 280 × 720. Since only the training set’s annotation is
released, we divide the training set with a 90%/5%/5% ratio
for training/validation/testing in the following study.

B. Experimental Settings

1) Evaluation platform: The proposed framework is de-
signed for energy-constrained edge devices. For evaluation
purposes, following Lubana et al. [6], we consider an em-
bedded hardware configuration including a Raspberry Pi 3
equipped with a Sony IMX219 image sensor with variable
resolution support. The Sony IMX219 supports a maximum
3,280×2,464 resolution with 12 MHz clock frequency. As
pointed out by Lubana et al. [6], the power consumption in

2https://youtube-vos.org/dataset/vis/

Algorithm 1 A Reinforcement-Learning-based Energy-
Efficient Framework
Input: N Video Frames {I0, I1, . . . , IN} of Resolutions {w0 ∗

h0, w1 ∗ h1, . . . , wN ∗ hN}
1: k ← 0 . initialize key frame
2: fk = Nfeat(Ik) . obtain key feature
3: f ′k = RoIAlign(NRPN (fk)) . obtain key RoI feature
4: {bk, ck} ← Nbbox(f ′k) . obtain key bbox and class
5: sk ← Nmask(f ′k) . obtain key segmentation mask
6: dk ← Ntrack(f ′k) . obtain key tracking prediction
7: Yk ← {bk, ck, sk,dk} . put together key predictions
8: Initialize ξ . initialize historical information
9: for t = 1 to N do

10: fa
4

t = Nfeat(I
a4

t ) . obtain low-resolution feature
11: st ← {fa

4

t , fk − fa
4

t , ξ} . collect current state
12: Estimate Q values and select action using policy network πθ
13: at = maxaQ(st, a; θ) . determine current action
14: Update ξ with at . update historical information
15: if at = a1 then . if key action
16: ft = Nfeat(It) . obtain current feature
17: k ← t . update key with current
18: else . if none-key action
19: OFk→t = FlowNet(Iatk , I

at
t ) . obtain optical flow

20: Sk→t = S(Iatk , I
at
t ) . obtain scale fields

21: ft =W(OFk→t, fk,Sk→t) . obtain current feature
22: end if
23: f ′t = RoIAlign(NRPN (ft)) . obtain current RoI feature
24: {bt, ct} ← Nbbox(f ′t) . obtain current bbox and class
25: st ← Nmask(f ′t) . obtain current segmentation mask
26: dt ← Ntrack(f ′t) . obtain current tracking prediction
27: Yt ← {bt, ct, st,dt} . put together current predictions
28: end for
Output: Energy-efficient video analytics results {Y0,Y1, ...,YN}

state Psensor,idle is 141.8 mW and that in Psensor,active is
8.27 mW/MP·R + 17.364 mW + 113.03 mW. We use a Texp
of 20 ms in the following study.

The Raspberry Pi 3 is equipped with an embedded GPU
consisting of a dedicated image signal processing pipeline [6].
Following prior work [6], we approximate PISP using the
GPU’s power consumption. PCPU and PGPU (W-level, typi-
cally) can be directly measured by an ammeter. Time required
by the Raspberry Pi ISP pipeline is approximately linear in
Rframe [6], TISP = 0.095 × Rframe + 0.032 (Rframe unit is
MP).

The following study focuses on evaluating the energy
efficiency and accuracy of our framework compared with
existing work. We use the mean Average Precision (mAP) [2]
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as the performance metric for video instance segmentation.
We also define energy reduction as the ratio of the energy
consumption of our method to that of existing work. The
energy consumption is calculated using the energy model
described in Section IV-B.

2) Training MaskTrackFlow R-CNN: In the MaskTrack-
Flow R-CNN architecture, we employ the ResNet-50-
FPN [25], [1] as the feature extractor Nfeat and we use the
Regional Proposal Network described by Yang et al. [2]. We
also adopt the same structures for the three heads Nbbox,
Nmask, and Ntrack. For the FlowNet model F , we use the
FlowNetC architecture [15], and apply the warping function
W from Deep Feature Flow [9]. Considering the complexity
of the proposed MaskTrackFlow model, we use a two-step
process to train it. We first train the feature extraction model
Nfeat and the three heads Nbbox, Nmask, and Ntrack on the
video instance segmentation task described by Yang et al. [2],
without considering the FlowNet model F . We then train the
FlowNet model F while freezing the other components (i.e.,
feature extractor Nfeat and the three heads), following the
design in Deep Feature Flow [9].

3) Training the policy network: To avoid unnecessary
computation, we separate training of the policy network πθ
from training the MaskTrackFlow model. In other words, the
weights of the MaskTrackFlow model are already learned
and frozen when we train the policy network πθ. We use
the features extracted by ResNet-50 [1], [25] from the final
convolutional layer of the first stage as the feature descriptor
for images, e.g., fa

4

t and fk in Equation 9. We use Adam [26]
as the optimizer with an initial learning rate of 0.0005. The
discount factor (γ) is set to 1, implying that each frame in the
video sequence is equally important. The exploration policy
uses an ε-greedy policy [27] and we set ε to decrease from
0.9 to 0.05.

4) Baselines: We compare the proposed reinforcement-
based approach of selecting frame resolutions with the fol-
lowing baseline methods:

(1) Downsampling Scan Method [6]: The Digital
Foveation method [6] improves system energy efficiency using
a multi-round, variable-resolution, variable-region strategy, in
which an application-specific estimated accuracy constraint
(cnstrt) may be used to govern the sensing and analysis
process. It was developed for still images and therefore does
not make use of temporal information about downsampling
resolution. There are several ways it might be extended to
video analytics, and we describe one straight-forward exten-
sion for use as a base case. We use the variable-resolution
concept of Digital Foveation but gradually vary the sensed
resolution for frame It from wt

8 ∗
ht

8 , wt

4 ∗
ht

4 , wt

2 ∗
ht

2 to
wt ∗ ht if the accuracy reduction has surpassed the constraint
cnstrt. In this work, we empirically set cnstrt to be 0.2, 0.4,
0.6 and 0.8, respectively. We call this extension to video the
Downsampling Scan method.

(2) Adaptive High-Resolution Frame Scheduling (Adap-
tiveHFS): This approach selects the key action a1 for a frame
It when the flow magnitude between It and the last key frame
Ik exceeds a certain threshold Thr, otherwise a certain non-
key action (i.e., a2, a3, or a4) is taken. Please refer to Xu

et al. [20] for the definition of flow magnitude. We select
Thr from 8 to 12 with an interval of 2. We have three
variants of AdaptiveHFS, each of which selects a different
non-key action to use: AdaptiveHFS(a2), AdaptiveHFS(a3),
and AdaptiveHFS(a4).

(3) Fixed-Interval High-Resolution Frame Scheduling
(FixIntervalHFS). This baseline method selects a certain
non-key action (a2, a3, or a4) for every l (l ∈ {1, 2, 3})
frames, and the rest is set as key action (a1). According to
which non-key action to take, we also have three variants for
the FixIntervalHFS approach, which are FixIntervalHFS(a2),
FixIntervalHFS(a3), and FixIntervalHFS(a4).

(4) Random High-Resolution Frame Scheduling (Ran-
domHFS): This baseline method determines actions for each
frame randomly with a hybrid distribution. Specifically, for
frame It, the probability of selecting the key action a1 is r
where r ∈ {0.9, 0.7, 0.5}, and the probability of taking other
three non-key actions (a2, a3, and a4) are uniform and sum
to 1− r.

C. Results
1) RL Training Visualization: Fig. 12a, 12b, and 12c il-

lustrate the average return during RL training where λ ∈
{0.4,0.6,0.8}. Note that we set C0 in Equation 11 to 825
so all sessions can generate positive and comparable returns.
Despite the fluctuations, all three curves steadily increase,
indicating that the policy network is learning to maximize
global return. The fluctuations of the curves plateau for large
episodes (e.g., > 500), which suggests that the upper bound is
being approached. When λ grows and the energy consumption
term in Equation 11 increases, the maximum return achieved
by the training curves also increases, which is consistent with
expectations.

2) mAP versus Energy Consumption: Fig. 13a, Fig. 13b,
and Fig. 13c illustrate the mAP (performance) versus energy
consumption reduction curves for our method and the base-
lines. The energy consumption reduces significantly (more
than 80%) at the cost of slight accuracy drops, no matter
which resolution-selection method is used, thus verifying the
effectiveness of the proposed adaptive resolution framework.
Note that the policy net πθ only accounts for a very small
proportion of the total energy consumption in Fig. 13, which
is around 4.2%, thanks to the low-resolution input and its
light-weight architecture. Moreover, our method outperforms
all other baseline approaches on all the energy consumption
intervals, which shows the superiority of our RL-based res-
olution selector. For realistic computer vision tasks, we can
fine-tune the RL models to have different energy consumption
rates to suit the varying requirements.

Additionally, as the upper-bound method, MaskTrack R-
CNN [2] delivers the highest mAP which is 41.7%. In contrast,
our method greatly reduces energy consumption at the cost of
slightly reduced accuracy, e.g. our framework achieves 41.4%
mAP (only reduced by 0.3%) but saves approximately 84.0%
energy consumption at the same time, which is much more
energy-efficient.

We also explore how the parameter λ in Equation 6 can
affect the proposed framework. λ characterizes the trade-offs
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(a) λ = 0.4 (b) λ = 0.6 (c) λ = 0.8

Fig. 12: The training curves of average return where λ value is set to 0.4, 0.6, and 0.8, respectively.

(a) Comparison of our method with the Downsam-
pling Scan method. Different λ values utilized by
the proposed method are also annotated.

(b) Comparison of our method with the AdaptiveHFS
and RandomHFS baselines

(c) Comparison of our method with the FixInterval-
HFS baseline

Fig. 13: mAP versus energy consumption reduction between the proposed method and the baselines.

between the accuracy and the energy consumption in our
system and is thus one of the most important parameters.
Generally, the higher λ is, the more important the energy
consumption term in Equation 6 will be. The influences of
different λ values can be seen in Fig. 13a, and we can discover
a general trend that a larger λ value can lead to a higher
energy consumption reduction rate, despite several fluctuations
of the accuracy. Such observations are generally in line with
our theoretical analysis.

3) Case Studies: This section further clarifies why the pro-
posed method outperforms the Downsampling Scan method,
as well describes three cases to provide intuition on why our
RL-based method can outperform others.

(1) Comparison with the Downsampling Scan method:
As shown in Fig. 13a, compared with the Downsampling Scan
method, our extension of Digital Foveation [6] to video, our
method achieves significantly better performance and energy
reduction results. This is because the Downsampling Scan
method attempts multiple downsampling resolutions for each
frame, instead of using temporal context to quickly arrive at
an appropriate downsampling rate. In contrast, our method
uses a light-weight RL-based policy network to dynamically
determine appropriate frame resolutions, avoiding an explicit
per-frame linear search process, and is therefore better able to
efficiently generalize to complicated video scenarios, e.g., VIS.
Our method also embodies the multi-round process in Digital
Foveation, but it allows the rounds to be divided among video

frames with only one round per frame and it exploits temporal
locality in the optimal downsampling rate.

(2) Comparison with the FixIntervalHFS baseline:
This case study compares our method with the FixInterval-

HFS(a2) baseline (l = 1) on a video sequence of 90 frames.
We first study how the Accumulated Energy Consumption
Reduction (AECR, the higher the better) rate varies on this
video sequence. As shown in Fig. 14 (up), our method has
82.5% mAP on this sequence, surpassing the 80.0% of Fix-
IntervalHFS(a2). Our method also demonstrates lower energy
consumption with 87.6% AECR (versus baseline’s 87.0%) on
the 90th frame. If we inspect the varying trends of AECR
on this sequence, we see that although our method selects
multiple key actions (a1) at the beginning, the non-key actions
(a2, a3) are frequently selected for frames 50 − 90, thus
reducing energy consumption. We plot the prediction results in
Fig. 14 (bottom) on this temporal range, where the resolution
selected by our method produces accurate results.

(3) Comparison with the AdaptiveHFS method:
Similarly, we report the AECR results for our method

and the AdaptiveHFS(a3) (Thr = 10) on a 90-frame video
sequence. As demonstrated in Fig. 15 (up), the mAP of our
method on this sequence is 85.0%, which is significantly better
than the 75.1% of the baseline, while our energy efficiency
is also better than the AdaptiveHFS method (85.9% AECR
versus 85.3%). It can be found that although our method has
selected multiple key actions (a1), it also opts for multiple
a4 which are the most energy-saving actions. As a result, our
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Fig. 14: A comparison between the proposed method and the FixIntervalHFS(a2) (l = 1) method.

Fig. 15: A comparison between the proposed method and the AdaptiveHFS(a3) (f = 10) method.

method produces better prediction results, as shown in Fig. 15
(bottom).

(4) Comparison with the RandomHFS method. In Fig. 16,
we show the comparison of our method with the RandomHFS
baseline on a 90-frame video. Fig. 16 (up) shows that our
method also outperforms the RandomHFS approach in both
mAP and energy consumption. In particular, our method has

selected a large percentage of a2 actions, while the baseline
has frequently selected the key actions a1. However, more
key actions do not necessarily lead to better performance.
As illustrated in 16 (bottom), our method has obtained better
prediction results than the baseline, although the baseline has
employed many more key actions. Therefore, we can arguably
conclude that our RL-based method can more accurately grasp
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Fig. 16: A comparison between the proposed method and the RandomHFS method.

the global video context and thus makes better resolution
decisions.

VIII. CONCLUSIONS

This paper describes an adaptive-resolution energy opti-
mization framework for a multi-task video analytics pipeline in
energy-constrained scenarios. We described a reinforcement-
learning-based method to govern the operation of the video
analytics pipeline by learning the best non-myopic policy for
controlling the spatial resolution and temporal dynamics to
globally optimize system energy consumption and accuracy.
The proposed framework is applied to video instance segmen-
tation which is one of the most challenging video analytics
problems. Experimental results demonstrate that our method
has better energy efficiency than all baseline methods. This
framework can be applied to a wide range of computer vision
pipelines with a high demand for efficient energy consumption,
e.g., various embedded and Internet-of-Things applications.
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