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Abstract
Accurate next-day air quality prediction is essential
to enable warning and prevention measures for cities
and individuals to cope with potential air pollution,
such as vehicle restriction, factory shutdown, and
limiting outdoor activities. The problem is challen-
ging because air quality is affected by a diverse set
of complex factors. There has been prior work on
short-term (e.g., next 6 hours) prediction, however,
there is limited research on modeling local weather
influences or fusing heterogeneous data for next-day
air quality prediction. This paper tackles this prob-
lem through three key contributions: (1) we leverage
multi-source data, especially high-frequency grid-
based weather data, to model air pollutant dynamics
at station-level; (2) we add convolution operators on
grid weather data to capture the impacts of various
weather parameters on air pollutant variations; and
(3) we automatically group (cross-domain) features
based on their correlations, and propose multi-group
Encoder-Decoder networks (MGED-Net) to effect-
ively fuse multiple feature groups for next-day air
quality prediction. The experiments with real-world
data demonstrate the improved prediction perform-
ance of MGED-Net over state-of-the-art solutions
(4.2 % to 9.6 % improvement in MAE and 9.2 % to
16.4 % improvement in RMSE).

1 Introduction
Air pollution is a major environmental concern in urban areas.
Accurate next-day air quality prediction is of particular im-
portance for cities and individuals to cope with air pollution in
the real world. With next-day air pollution warning, cities and
individuals can respond in advance, for example, restricting
traffic, shutting down factories, and limiting outdoor activit-
ies. Despite extensive studies, next-day air quality prediction
remains a challenging problem, due to high spatio-temporal
variability and difficulties in long-term prediction (Figure 1).

First, air quality is affected by complex factors and has high
spatial and temporal variability. Usually, air quality monitor-
ing stations are sparsely distributed in space. For example,
there are 35 observation stations in Beijing, China, as shown

Figure 1: Challenges of air quality prediction: (Left) high spatial and
temporal variability and (Right) difficulties in long-term prediction.

in the top left subfigure in Figure 2. A recent study shows that
the representation area of a station varies by both location and
time, which can range from 0.25 to 16.25 km2 and is less than
3 km2 for most stations [Shi et al., 2018]. Besides spatial vari-
ability, gradual and abrupt changes caused by various factors
also induce temporal variability. Given the high spatial and
temporal variability at station-level, leveraging heterogeneous
data to learn those dynamics is a major challenge.

Second, predicting long-term air quality is particularly chal-
lenging. Previous studies have shown good prediction perform-
ance in the short term (e.g., next 6 hours), but the prediction
error increases quickly for longer term prediction (e.g., next
day), as shown in Figure 1. In particular, weather conditions
play an important role in long-term prediction and it has been
shown that severe haze events in Beijing are largely affected
by weather conditions [Guo et al., 2014]. Although previous
studies have included weather forecast as input, given the high
variability of weather parameters, how to effectively repres-
ent weather data and capture their impacts on air pollution
dynamics requires further exploration.

When dealing with multi-source data, one key question is
how to fuse them and leverage the complementary information
from heterogeneous data. Currently, there exist only a few
fusion models for such environmental problems. Multimodal
deep learning proposes DNN-based fusion architectures to
learn the joint space with multiple modalities [Ngiam et al.,
2011]. In the multimodal setting, for example, video which
inherently includes modalities like image, motion and sound,
each modality is an integrated component and multiple mod-
alities are fused for specific tasks. Motivated by multimodal
data fusion, for air quality prediction, we consider two major
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questions: (1) how to identify multiple modalities or feature
groups from multi-source data, which are not inherently mul-
timodal; and (2) how to conduct time series prediction with
the fusion architecture, since LSTM and seq2seq models are
originally designed for single feature scenarios.

To address the above-mentioned challenges, we propose
multi-group Encoder-Decoder networks (MGED-Net), which
fuses heterogeneous data to provide next-day air quality pre-
diction. The main contributions of our work are:

• To capture spatial and temporal variations of air pollu-
tion at station-level, we leverage multi-source data including
air pollutants, weather, road networks and elevation. A major
improvement over previous studies is the utilization of high-
frequency grid-based weather data from an official source.

•MGED-Net adopts a local convolution method to learn
local weather impacts on air pollution dynamics. This feature
representation is applied to both historical and forecast weather
data and it enables more accurate air quality prediction.

•MGED-Net uses a novel structure that combines dis-
tributed fusion and sequence learning. The distributed fusion
is accomplished through a grouping strategy that generates
multiple (cross-domain) feature groups, and sequence learning
is based on Encoder-Decoder LSTM structure.

• Extensive evaluations using real-world dataset demon-
strate improved performance of MGED-net over state-of-the-
art models for next-day air quality prediction.

2 Data Sources and Problem Formulation
Our study focuses on predicting next-day PM2.5 1.

2.1 Data Sources
Based on extensive literature survey and our preliminary ana-
lysis, we have chosen the following datasets for our study.

Air Quality Data
We collected air quality data from all 35 stations in Beijing,
China from January 1st, 2016 to January 31st, 2018. The
stations are located in urban, suburban, near-traffic and other
regions. Each station provides hourly reports of multiple air
pollutants, including PM2.5, PM10, O3, NO2, CO, SO2. One
major problem with the air quality dataset is missing data. The
percentage of missing varies by air pollutant type (e.g., 14.7 %
for PM2.5 and 28.6 % for PM10). We use linear interpolation
to fill in missing data that occur within 3 hours. Continuous
missing data which span longer than 3 hours are marked as
NaN and not used in our study.

Grid Weather Data
Most previous studies use station-based weather data. How-
ever, there are only 17 weather monitoring stations in Beijing.
Considering that some weather parameters can change sig-
nificantly within a short distance, the representativeness of
station-based weather data remains a serious concern. Besides,
the highly nonuniform distribution of weather stations imposes
further difficulties in representing weather impacts for all air
quality monitoring stations.

1PM2.5 refers to particulate matter (PM) with a diameter of less
than 2.5 micrometers, which is a major concern for air quality.

Therefore, we choose to use grid-based weather data, which
are obtained from Global Data Assimilation System (GDAS),
from National Center for Environmental Prediction (NCEP)
Global Forecast System (GFS) 2. This is a data assimilation
product, where multi-source observations from stations, satel-
lites, radars, etc. are incorporated with physical atmospheric
model. The spatial resolution of the grid data is 0.25 ◦ and it
has 117 grids covering Beijing area. The selected attributes of
weather data include temperature, humidity, wind speed and
wind direction (further decomposed into wind u and wind v).
While GDAS provides 3D grid data, only one layer of height
50 m (for temperature, humidity) and another layer of height
100 m (for wind) are selected. To prepare historical weather
data, a temporal linear interpolation is conducted to convert
the 3-hourly raw data to hourly data.

Besides obtaining historical weather data, we use a similar
process to extract weather forecast data from the weather fore-
casts of GDAS. It should be noted that no historical weather
data are included in weather forecast data. Therefore, histor-
ical and forecast weather data are separately generated by the
official source and they both represent the real-world state-of-
the-art accuracy.

Geo-Context Data
We include road networks and elevation data to represent
geo-context of stations. The road networks data is from Open-
StreetMap (OSM), and elevation is Shuttle Radar Topography
Mission (SRTM) data in 80 m spatial resolution. The reason
that we leverage geo-context data instead of Station ID to
differentiate stations is because they explicitly describe geo-
graphic characteristics of different locations [Lin et al., 2017],
and can be further applied to predict air quality at non-station
locations where using Station ID is infeasible.

2.2 Problem Formulation
Let si be the target station, where multi-source data are gathered
at or around si. Given a time window of length T , air qual-
ity features are specified as AAA = (aaa1, aaa2, . . . , aaaT ) ∈ RT×k,
where aaai ∈ Rk and k is the number of air pollutants ob-
served. Historical weather features are specified as WhWhWh =
(whwhwh

1,whwhwh
2, . . . ,whwhwh

T ) ∈ RT×h×c, where whwhwhi ∈ Rh×c, h is
the number of weather parameters observed, and c is the size of
grid selected. Both historical and forecast weather data are util-
ized around a station. Similarly, forecast weather features are
specified asWfWfWf = (wfwfwf

T+1,wfwfwf
T+2, . . . ,wfwfwf

T+τ ) ∈ Rτ×h×c
and τ is the length of forecasting time window. The geo-
context features are specified as GGG ∈ Rm, where m is the
number of geo-context features extracted. Time features are
specified as TTT ∈ Rp, where p is the number of time features
extracted from timestamps of data points.

Problem: Given a station si and a target air pollutant a, his-
torical time window T , we fuse multi-source data to predict asi
in the next τ hours, denoted as âsi = (âT+1

si , âT+2
si , . . . , âT+τ

si ) ∈
Rτ . The purpose of the fusion model is to predict:

â = F(AAA,WhWhWh,WfWfWf ,GGG,TTT ), (1)

where F is the fusion model.
2https://www.ncdc.noaa.gov/data-access/model-data/

model-datasets/global-data-assimilation-system-gdas
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Figure 2: Architecture overview of MGED-Net: The model contains multiple Encoders and one Decoder, and both Encoder and Decoder are
established using stacked LSTMs. Multiple feature groups are automatically determined and fed into different Encoders. A fusion unit is used
to combine their hidden states into a joint representation, which is used as the initial state of the Decoder. After that, forecast features are fed
into the Decoder, which predicts future air quality sequentially.

3 MGED-Net Model Description
We first give an overview of the proposed MGED-Net model,
then describe in detail each of the key components.

3.1 Overview of MGED-Net
Figure 2 shows the overall architecture of MGED-Net. MGED-
Net is intrinsically designed for multi-feature setups by first
formulating the feature groups and then feeding them into the
Encoder-Decoder structure. It effectively integrates comple-
mentary information from different data sources. It has three
key components: feature representation, multi-group feature
integration, and fusion architecture.

3.2 Feature Representation
Given various types of data obtained from each station, the first
component of MGED-Net aims to extract effective features at
the station level. Specifically, we investigate how to represent
various data types (e.g., grid, vector) at point-based stations.

Air quality features. As mentioned earlier, each station
monitors 6 types of air pollutants and reports their concentra-
tion levels hourly. All these air pollutant time series readings
are directly included.

Historical and forecast weather features. The grid-based
weather data characterizes the local weather around a station.
With grid data, we experiment with three different options to
extract weather features as shown in Figure 3. The first option
is a widely used approach that extracts the nearest grid ele-
ment, i.e., the grid element that a station falls in. The problem
with this approach is that only limited weather information is
utilized. The second and third options use the idea of “local
grids”, i.e., k × k grids around a station, which have better
spatial coverage around the stations. While option 2 computes
the mean values of weather parameters, option 3 adopts a con-
volution layer on local grids to learn the kernels for various
weather parameters. The convolution layer is applied to cap-
ture nonuniform impacts of local weather, for example, some
kernels can represent the derivatives of wind field.

Figure 3: Different grid data representations (AQ: air quality).

Geo-context features. We convert road networks data into
grid format by generating a fishnet with 10 km spatial resolu-
tion. The road density of each grid element is the number of
roads passing through it. For elevation, to capture its variation,
we compute the (mean, std) elevation of pixels within each
10 km2 grid element. Road density and elevation features of a
station are extracted from the grid element it falls in.
Time features. Given the timestamps of input data points,
we extract 3 time features of the last timestamp: hour of day,
day of week, and month.

Summary. The extracted features fall into 5 categories: air
quality, historical weather, forecast weather, geo-context, and
time. For prediction, these features are converted to the range
of [0, 1] using Min-Max Normalization, and the inverse of
Min-Max Normalization is applied to recover real values.

3.3 Multi-Group Feature Integration
Given multiple features as input, the purpose of multi-group
feature integration is to formulate feature groups. Intuitively,
features within the same domain (e.g., air quality vs. weather)
can be grouped together, which is a strategy widely used in
previous studies [Yi et al., 2018; Yuan et al., 2018]. We refer to
this strategy as “domain groups” which leverages the domains
of the features for grouping.

However, this intuitive grouping strategy may not be op-
timal, especially given the fact that cross-domain features (i.e.,
features from different domain groups) may be more closely
related. Figure 4 shows a correlation analysis of features from
different domains. We can see that O3 (an air quality feature)
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Figure 4: Correlation matrix of multiple features.

is more related to temperature and humidity (two weather fea-
tures). As pointed out by [Wu et al., 2004], it is important to
form “statistically independent” feature groups as a prelimin-
ary process for fusion, which minimize inter-group correlation
and maximize intra-group correlation.

Our goal is to divide the extracted features {f1, f2, . . . , fk}
into D ∈ [1, k] feature groups. Since most features are either
air quality or weather, for feature integration, we focus on
air quality and weather features. We consider three different
grouping strategies: By each, By domain, and By correlation.

By Each
With this strategy, each feature forms a group by itself, and fed
into fusion model. The number of groups D equals k, which
is the number of features. This strategy can be problematic
when the number of features increases greatly and it relies
completely on the fusion unit in learning feature interactions.

By Domain
Features can also be directly grouped by their domain categor-
ies (i.e., air quality and weather). Here, D = s, and s is the
number of domain groups (D = 2 in our case). However,
this grouping strategy could be harmful when non-related fea-
tures are in the same group, especially when they are fed into
networks with one set of parameters.

By Correlation
The intuitions this grouping strategy are: (1) intra-group cor-
relation should be maximized, i.e., highly correlated features
should be grouped together and fed into the same subnetwork;
and (2) inter-group correlation should be minimized. This is
a non-overlapping strategy and each feature only belongs to
one group, which is different from previous approach [Yi et
al., 2018] where the target feature is included in all groups.

We design a clustering-based approach to group features.
The correlation c(fp, fq) between features fp and fq is com-
puted as their average Pearson correlation coefficients of all
samples. The inter-group correlation is measured as the aver-
age pair-wise correlation of features from group Gi and Gj ,
and |Gi|, |Gj | are the number of features within each group:

C(Gi, Gj) =
1

|Gi||Gj |
∑
fp∈Gi

∑
fq∈Gj

|c(fp, fq)|, i, j ∈ D

(2)

The intra-group correlation is measured as:

C(Gi) = C(Gi, Gi), i ∈ D (3)

where C(Gi) is the average pair-wise correlations of features
within group Gi. The objective function used to detect feature
groups is defined as:

min
1∑D−1
d=1 d

D∑
i=1,j>i

[
C(Gi, Gj)

C(Gi)
+
C(Gi, Gj)

C(Gj)
], i, j ∈ D

(4)
The objective function aims at minimizing the average ratio
of inter-group correlation to intra-group correlation. Given a
small D, the computational complexity isO(Dk), and k is the
number of features. We experiment with small D candidates
{2, 3, 4} and pick the one that minimizes the function.

3.4 Fusion Architecture
We use Encoder-Decoder LSTM model [Sutskever et al., 2014]
as our base network for time series prediction. The Encoder-
Decoder structure can naturally separate historical and future
time sequences, and LSTM is used for learning temporal de-
pendencies in sequences.

Previously, Encoder-Decoder LSTM model is widely used
in single feature scenario. Given multiple features, the ques-
tion is how to fuse them into Encoder-Decoder LSTM model
to get accurate prediction. Using the proposed multi-group fea-
ture integration strategy, we obtain D feature groups denoted
as {(xxx1d,xxx2d, . . . ,xxxTd ) | d = 1, 2, . . . , D}, where xxxd ∈ Rcd and
cd is the number of features in the d-th group. We investigate
three different fusion architectures. The last two approaches
are based on Multiple Encoders structure and focus on Fusion
Unit shown in Figure 2.
Feature fusion. This fusion architecture directly concaten-
ates all the feature to form a single sequence (xxx1,xxx2, . . . ,xxxT ),
where xxx ∈ Rk and k is the number of all features. This long
vector is used as Encoder input.
Encoder fusion. Given the feature groups generated, each
group (xxx1d,xxx

2
d, . . . ,xxx

T
d ), d ∈ [1, D] is used as the input of one

Encoder, and their hidden states are further concatenated as
(hhh1,hhh2, . . . ,hhhD) and used as the Decoder’s initial state.
Encoder fusion + Group interactions. The group interac-
tions are important in learning complex relationships among
features. Building upon Encoder fusion structure, we further
model group interactions based on Tensor Fusion [Zadeh et
al., 2017], an effective approach to learn inter-modality inter-
actions. For our specific problem, if the target (i.e., PM2.5)
is in group Gk with hidden state hk, the interaction between
group Gk and Gi is computed as the outer product between
hk and hi:

hki =

[
hk
1

]
⊗
[
hi
1

]
, i ∈ [1, D], i 6= k (5)

By computing the interactions of feature group Gk with all
other groups, their products are reshaped and concatenated
as a sequence (hhhk1,hhhk2, . . . ,hhhkD) and a fully connected (FC)
layer is applied to reduce dimension. The output of FC layer
is used as the Decoder’s initial state.
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4 Experiments and Analysis
4.1 Implementation Details
We process data from January 1st, 2016 to January 31st, 2018
and divide the samples by 8:1:1 into training, validation, and
testing data. Training, validation and testing data do not over-
lap. The sequence lengths of Encoder and Decoder are set to
48 and 24. The size of local grids and convolution kernel are
both set to 3×3. We conduct grid search to decide the optimal
hyperparameter combination. We set the learning rate to 0.001,
batch size to 128, and apply early stopping for model training.
We use Adam to update parameters and Mean Squared Error
(MSE) as loss function. We add dropout layer with rate 0.3 on
Encoders and Decoder. All experiments are run on a machine
with two NVIDIA GTX 1080 Ti GPUs.

4.2 Evaluation Metrics
We compute the Root Mean Squared Error (RMSE) and Mean
Absolute Error (MAE) for each future hour prediction, and
average them into different hour ranges. Metrics unit: µg/m3.

In the following subsections, we first evaluate the perform-
ances of different approaches for the three key components in
MGED-Net, and then compare MGED-Net with other models.

4.3 Performance of Feature Representation
We compare three different options to represent grid weather
data: nearest grid, local mean and local convolution. They are
applied to both Encoder and Decoder 3.

1-6h 7-12h 13-18h 19-24h

E (nearest) + D (-) 15.57 24.17 33.51 42.01
E (mean) + D (-) 15.11 21.92 31.42 39.13
E (conv) + D (-) 15.41 22.09 28.49 36.17
E (conv) + D (nearest) 15.76 18.98 22.71 28.73
E (conv) + D (mean) 16.00 19.94 22.43 26.72
E (conv) + D (conv) 14.36 18.86 20.27 22.35

Table 1: Grid data representations vs. prediction performance (MAE),
E: Encoder, D: Decoder, D (-): no weather forecast

As shown in Table 1, weather forecast data we use makes
significant improvement in long term prediction, especially
after 6 hours. Among the three options for representing grid-
based weather data, local convolution performs the best for
1 to 24 hours prediction, and local mean achieves better res-
ults than nearest grid in longer term. Previous studies using
nearest weather station is similar to nearest grid approach. The
results proves the effectiveness of applying local convolution
to capture local weather impacts on air pollution variations.

4.4 Performance of Feature Grouping
We compare different feature grouping strategies on multiple
features 4. Using By correlation strategy, the optimal number
of groups is 4 and the generated groups are: Group 1 (PM2.5,
PM10, CO, SO2, NO2), Group 2 (O3, humidity, temperature),

3By correlation grouping strategy and Encoder fusion are applied.
4Local convolution and Encoder fusion are applied.

Group 3 (wind u), Group 4 (wind v). The geo-context, time
features are incorporated as separate groups.

1-6h 7-12h 13-18h 19-24h

By each 15.79 20.05 22.31 23.94
By domain 16.20 20.73 23.03 26.95
By correlation 14.36 18.86 20.27 22.35

Table 2: Feature grouping strategy vs. prediction performance (MAE)

As shown in Table 2, By correlation achieves the best per-
formance for 1 to 24 hours predictions, and By domain per-
forms the worst. Though By domain grouping is a widely used
strategy, it actually ignores the cross-domain feature relation-
ships. When non-related features are fed into one Encoder, it
needs to learn both feature interactions and temporal depend-
encies and the burden is too heavy. In contrast, By correlation
feeds Encoder with highly correlated features, and the results
demonstrate the improvement with this grouping strategy.

4.5 Performance of Fusion Architectures
We compare three fusion architectures: Feature fusion, En-
coder fusion, and Encoder fusion + Group interactions (GI).

1-6h 7-12h 13-18h 19-24h

Feature fusion 18.07 21.02 22.99 26.17
Encoder fusion 14.36 18.86 20.27 22.35
Encoder fusion + GI 13.44 18.05 20.95 21.91

Table 3: Fusion architecture vs. prediction performance (MAE)

Table 3 shows the comparison results, Encoder fusion and
Encoder fusion + GI (Group interactions) achieve much better
performance than Feature fusion. Feature fusion is an intu-
itive way to deal with multiple features. However, it can be
problematic due to the facts that: 1) feature correlations are
weakly captured by the training weights of an Encoder [Ren
et al., 2016], and 2) the prediction performance will degrade
rapidly as input length increases [Cho et al., 2014]. Encoder
fusion is an effective way to learn the joint representation of
multiple Encoders. After adding inter-group interactions, the
prediction performance is further improved.

4.6 Comparison of Fusion Models
Finally, we compare our MGED-Net model with five different
models including baseline and state-of-the-art models. Here,
we present the best result for each model by experimenting
with different parameter settings.
• Naive approach: Using current hour to predict all future

hours, no prediction model applied.
• LSTM: Using historical 48 hours to predict the future.
• seq2seq: Stacked LSTMs in both Encoder and Decoder,

and historical 48 hours for future predictions.
• GeoMAN [Liang et al., 2018]: A Feature fusion architec-

ture based on Encoder-Decoder structure, and employs
multi-level attentions to learn feature importances.
• DeepAir [Yi et al., 2018]: A distributed fusion architec-

ture that fuses multiple FusionNets based on parametric-
matrix-based strategy.
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1-6h 7-12h 13-18h 19-24h
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Naive approach 14.87 26.33 26.00 43.16 32.21 50.70 35.45 54.79
LSTM 14.17 20.91 25.88 33.83 32.67 40.23 37.03 44.08
seq2seq 14.13 21.39 23.99 32.59 30.14 38.55 33.61 41.89
DeepAir (6 hours) [Yi et al., 2018] 19.66 25.81 23.53 29.82 28.80 36.26 28.03 35.12
DeepAir (48 hours) [Yi et al., 2018] 19.18 25.15 23.13 29.64 25.20 31.88 28.43 35.37
GeoMAN (6 hours) [Liang et al., 2018] 13.92 19.04 19.28 25.14 23.48 30.22 28.94 36.77
GeoMAN (48 hours) [Liang et al., 2018] 14.03 19.10 19.42 25.06 22.95 29.31 24.23 32.14
MGED-Net (w/o Group interactions) 14.36 20.68 18.86 26.63 20.27 28.01 22.35 31.44
MGED-Net (w/ Group interactions) 13.44 17.35 18.05 22.83 20.95 26.01 21.91 26.88

Table 4: Performance comparisons of different models.

Table 4 shows the prediction performance of different mod-
els. Among all models, MGED-Net (w/ Group interactions)
has the best performance for 1 to 24 hours prediction. Com-
pared with LSTM, seq2seq has better performance in longer
hours which demonstrates the effectiveness of using Encoder-
Decoder LSTM as basic network. For DeepAir and GeoMAN
models, in their original settings, they use historical 6 hours
sequences as input. We experiment with different sequence
lengths (i.e., 6 and 48 hours) for them. With longer historical
sequences, GeoMAN achieves significant improvements in
longer term prediction (i.e., after 12 hours), owing to learning
temporal dependency with LSTM. In contrast, DeepAir has
no component for sequence learning, the improvement with
longer historical hours is not obvious. With longer historical
sequences, GeoMAN works much better than DeepAir. We
also notice that DeepAir perform worse in short term which
may due to By domain grouping applied as well as its fusion
strategy. Compared with GeoMAN, MGED-Net with Group
interactions achieves 4.2 % to 9.6 % improvement in MAE as
well as 9.2 % to 16.4 % improvement in RMSE. The major
problem of GeoMAN is the feature interactions are not well
modeled with its Feature fusion architecture.

5 Related Work
Air Quality Prediction
Recent progress in air quality prediction can be divided into
two categories. The first category is about data source, which
explores a variety of data that can be potentially leveraged to
improve prediction performance. In recent studies, weather
forecast data [Liang et al., 2018; Yi et al., 2018] and geo-
context data [Lin et al., 2017] are included and proved to be
effective. The other category is about prediction model. Given
multi-source data, how to fuse them to provide accurate and
robust predictions is still a challenging problem. Previous
models like Multi-Kernel Learning [Zheng et al., 2015] fuse
different data sources by separating them into spatial and
temporal views, while more recent DNN-based models focus
more on designing the fusion architecture [Liang et al., 2018;
Yi et al., 2018] to fuse multi-source data.

Data Fusion
The purpose of data fusion is to leverage the complement-
ary information from multi-source data [Ngiam et al., 2011;
Liu et al., 2018]. Both traditional and DNN-based approaches

have been explored [Zheng, 2015; Alam et al., 2017]. Mul-
timodal learning has been a growing trend in machine learning
field and is closely related to our work. A variety of DNN-
based fusion models have been proposed. There are two main
strategies: early fusion and late fusion [Nojavanasghari et
al., 2016]. Early fusion (also called Feature Fusion) simply
concatenates all the features into a long vector as model in-
put [Liang et al., 2018], while late fusion leverages inform-
ation learned from each modality and fuses them with spe-
cific approaches [Ngiam et al., 2011]. For late fusion, dif-
ferent methods have been proposed. For example, LSTM
fusion concatenates all hidden states from LSTM [Long et al.,
2018], and DNN-based fusion combines multimodal predic-
tions with fully connected layers [Nojavanasghari et al., 2016;
Li et al., 2017]. For air quality prediction, an attention-based
feature fusion model was proposed [Liang et al., 2018], which
leverages an Encoder-Decoder structure for sequence learning
and multi-level attentions to learn feature importances. And
a parametric-matrix-based fusion model has been proposed,
which works as a form of ensemble model by learning weights
for predictions from different components [Yi et al., 2018].
Compared with existing fusion models for air quality predic-
tion, MGED-Net model takes advantages of both distributed
structure and sequence learning. As a result, both complex
feature interactions and temporal dependencies can be learned
to improve prediction accuracy.

6 Conclusions and Future Work
In this work, we propose multi-group Encoder-Decoder net-
works (MGED-Net) for next-day air quality prediction. MGED-
Net consists of 3 key components: convolution-based grid data
representation, correlation-based feature grouping, and multi-
group fusion with group interactions. Experimental results on
real-world dataset demonstrate the effectiveness of MGED-
Net for next-day air quality prediction. The proposed model
can also be potentially used in other multi-source data prob-
lems. For future work, we would like to investigate more on
multi-feature relationships and fusion models which can adjust
its fusion structure (i.e., different groups) with time-variant
characteristics such as weather variations.
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