

Balanced Scheduling and Operation Chaining in

High-Level Synthesis for FPGA Designs

David C. Zaretsky1, Gaurav Mittal1, Robert P. Dick2, and Prith Banerjee1

1
 Department of Electrical and Computer Engineering

University of Illinois at Chicago

851 South Morgan Street

Chicago, IL 60607-7043

{dcz, mittal, prith}@uic.edu

2
 Department of Electrical Engineering & Computer Science

Northwestern University

2145 N. Sheridan Road, L324

Evanston, IL 60208-3118

dickrp@eecs.northwestern.edu

Abstract

In high-level synthesis for FPGA designs, scheduling and

chaining of operations for optimal performance remain

challenging problems. In this paper, we present a balanced

scheduling routine that uniformly distributes operations

across states to reduce critical timing paths in the absence

of accurate functional unit delay models. On average,

results show improvements in frequency and run times for

balanced scheduling over ASAP, ALAP, and force-directed

scheduling. Additionally, we provide a methodology for

precision-based delay modeling of operations. We present a

balanced chaining routine that, given a target frequency,

uses this modeling technique to reduce the number of clock

cycles in the design. Results show approximately 20%

improvement on average in run times when incorporating

our balanced chaining routine with scheduling. Applying

balanced chaining in a high-level synthesis tool allowed

performance improvements between 8–29× for large,

complex applications. Our method for modeling operation

delays is shown to be accurate in estimating delays for

operation chaining during high-level synthesis.

1. Introduction

In recent years, the sizes and complexities of designs

for Field Programmable Gate Arrays (FPGAs) and other

reconfigurable hardware devices have increased

dramatically. As a result, the manual approach to hardware

design for these systems has become cumbersome, making

high-level synthesis an increasingly attractive approach for

reducing the design time of complex systems. Traditionally,

the high-level synthesis problem is one of transforming an

abstract model of a high-level application into a set of

operations for a system, in which scheduling and binding are

performed to optimize the design in terms of area, cycles,

frequency, and power. Generally, scheduling is performed

on a control and data flow graph (CDFG), which is made of

nodes representing inputs, outputs, and operations. Most

high-level synthesis tools allow tradeoffs between these

metrics based on estimates. At high levels of abstraction,

these estimates are prone to errors, leading to inaccurate

predictions of the final implementation. Poor decisions due

to inaccurate high-level estimates have direct impact on all

future optimizations and the resulting design.

Accurate estimation plays a particularly important role

in scheduling operations for hardware implementation on

FPGAs. The operation nodes in the CDFG are scheduled by

assigning each operation to a register transfer level (RTL)

state in a finite state machine using schemes such as As-

Soon-As-Possible (ASAP) and As-Late-As-Possible (ALAP)

scheduling. When resources are critical, other schemes such

as list scheduling and force-directed scheduling are applied.

When targeting FPGAs, infinite resources are often

assumed. The objective of scheduling is to minimize the

number of clock cycles (states), while maximizing the

frequency and parallelism in the design, even at the cost of

area. While ASAP and ALAP scheduling are quite efficient

for this task, they generally hamper operation parallelism by

producing a non-uniform distribution of operations among

the state cycles. This results in an uneven distribution of

resource usage, latency, and power. Likewise, force-directed

scheduling, which balances resource utilization, is inefficient

in the context of FPGA designs for two reason. Firstly,

operations are generally mapped to logic blocks on the

FPGA, which makes the resource optimizations less

effective. Secondly, most FPGA synthesis tools are timing-

driven; they commonly replicate hardware in order to

improve timing performance.

Operation chaining is a technique that reduces cycles in

a design by allowing the result of an operation to be used in

the same cycle. It is expected that scheduling without

operation chaining will produce the best overall frequency at

the cost of cycles, since the critical path is limited only by

the single operation in the design with the largest delay.

Conversely, a naïve approach to operation chaining may

result in long critical paths, low frequencies, and suboptimal

performance. An optimal chaining technique is one that

optimizes both frequency and clock cycles simultaneously.

In this work, we present a balanced scheduling routine

in which operations are uniformly distributed across states in

order to optimize the timing performance of the FPGA

design; area utilization is not considered here since

unconstrained resources for FPGA designs are assumed. By

distributing operations evenly among states, we are

essentially partitioning the critical path more uniformly by

inserting registers in strategic places. Unlike existing FPGA

scheduling algorithms, our balanced scheduling technique

considers all operation types equally when balancing the

number of operations per state, allowing a more efficient

distribution of operations among FPGA logic blocks. We

This material is based upon work supported by the National Science

Foundation under Grant No. 0609666.

Proceedings of the 8th International Symposium on Quality Electronic Design (ISQED'07)
0-7695-2795-7/07 $20.00 © 2007

also present a balanced chaining routine that reduces the

clock cycles while balancing the critical path of the design

given a target frequency. In order to accurately determine

the best-fit operation chaining, we require a delay model that

considers varying bit-width for each operation implemented

in the target FPGA architecture. The methodology for

obtaining these models is also presented.

The remainder of this paper is organized as follows.

Section 2 discusses related work and our contributions. Our

balanced scheduling and chaining algorithms are presented

in detail in Sections 3 and 4, respectively. Section 5 reports

experimental results on a set of ten benchmarks. We also

show comparison results for a set of larger applications

using these scheduling techniques. Finally, conclusions and

future work are presented in Section 6.

2. Related Work and Contributions

Numerous algorithms for scheduling have been

developed over the years by various researchers. For a given

data flow graph, scheduling determines the concurrency of

the resulting implementation by assigning operations in a

CDFG to specific cycles, assuming either unconstrained or

constrained resources. In this paper we study the use of

scheduling in the context of unconstrained resources. Local

greedy algorithms based on ASAP and ALAP scheduling are

often used when large problem instances prevent techniques

with high computational complexity. Higher-quality, but

higher computational complexity approaches based on force-

directed approaches have also been proposed.

Force-directed scheduling was introduced by Paulin

and Knight [2] as a means of minimizing required resources

under timing constraints. The algorithm uses the ASAP and

ALAP times to determine the time frame for each operation,

whereby a force is computed as a distribution function to

determine the best schedule for the operation. The worst-

case time complexity for the algorithm is cubic in the

number of operations. Efficiency improvements in force-

directed scheduling were shown by Verhaegh et al. [4]

through incremental force calculations that reduce the

complexity to quadratic in the number of operations. Paulin

and Knight [2][3] have shown how force-directed scheduling

can be integrated with list-scheduling, where the force

calculations are used as the priority function. Although it

generally produces high-quality solutions, force-directed

scheduling can be too time-consuming for scheduling large

problem instances. In contrast to previous force-directed

techniques, our balanced scheduling approach only considers

the operation-level parallelism in the design, not resource

utilization. In other words, it considers all operations equally

as it attempts to uniformly distribute the number of

operations per cycle within the ASAP/ALAP time frame.

Kerns and Eggers [5] introduced a balanced scheduling

algorithm that schedules instructions based on an estimate of

the load-level parallelism in the program. The scheduler

computes load instruction weights based on a measure of the

number of instructions that may execute in parallel with each

load instruction. The instructions are then spread out to

cover the load latency. Our balanced scheduling algorithm

considers the operation-level parallelism for all single and

multi-cycle operations, not just load instructions. The weight

of each instruction is based solely on the number of

hierarchical dependencies. Surprisingly, this results in an

algorithm that efficiently produces significantly better

quality of results than force-directed scheduling.

Much research has been conducted on estimating delays

in high-level synthesis. However, there has been very little

research in using estimated delays at high levels of

abstraction in the context of operation chaining during

scheduling of CDFGs for FPGA designs. Nemani and Najm

[9] proposed a technique for measuring delays of

combinational logic circuits, but their work is limited to

simple Boolean functions and does not consider arithmetic

operations. Nourani and Papachristou [10] presented a

method of estimating delays for RTL logic in the context of

false-path detection, in which they construct a Propagation

Delay Graph to compute the critical delay in the design.

Srinivasan et al. [8] described a system for estimating area

and delay from behavioral RTL logic descriptions using

best-fit polynomial models. Their method, however, requires

logic synthesis of the design into a network of simple gates.

Xu and Kurdahi [11] presented an approach for estimating

area and timing delays for FPGA designs based on CLB and

wire modeling, given an input logic netlist. Nayak et al. [12]

developed an area and delay estimator for a high-level

synthesis compiler that translates MATLAB code to RTL

VHDL and Verilog for FPGAs. Their method of prediction

is formulated as an equation based on constant parameters to

be determined experimentally for each operation. Jiang et al.

[13] presented a similar approach in which accurate high-

level macro-model equations are used for estimating area,

delay, and power of various RTL operations for a target

FPGA architecture. Experimental values were obtained for

each operation during high-level synthesis with varying bit-

widths and the macro-model equation for the operations was

extrapolated from a best-fit curve. Our method of estimating

critical delays for our balanced chaining algorithm is based

on their approach.

There are many other effective approaches to

optimizing design performance, such as retiming, which is

generally applied after scheduling. Given a fixed number of

cycles in the design, retiming relocates registers across logic

gates in order to reduce the maximum register-to-register

delay [14][15][16]. In contrast, the proposed balanced

chaining technique is applied during scheduling to optimize

the number of cycles in the design given a target frequency.

In this work, we present a balanced scheduling routine

that uniformly distributes operations across states to reduce

critical paths in the absence of accurate functional unit delay

models. To our knowledge, this is the first scheduling

algorithm to balance operation execution intervals in order

to improve timing performance for high-level synthesis of

FPGA designs. On average, results show improvements in

frequency and run times over the most closely-related

Proceedings of the 8th International Symposium on Quality Electronic Design (ISQED'07)
0-7695-2795-7/07 $20.00 © 2007

existing techniques when used for FPGA designs.

Additionally, we present a balanced chaining algorithm for

use in high-level synthesis. Given a target frequency, this

algorithm uses precision-based delay modeling of operations

to balance combinational paths, thereby minimizing the

critical path while also reducing the number of clock cycles.

Experimental results using balanced chaining have shown

approximately 20% increase in performance on average over

other chaining routines. By incorporating this routine in a

high-level synthesis tool we have observed 8–29×

improvements in FPGA performance for large, complex

applications over a DSP architecture. This supports our

claim that it is possible to effectively chain operations based

on high-level predictions of functional unit delays.

3. Balanced Scheduling

In conventional FPGA design, performance is often

optimized without regard for resource requirements. The

goal is to reduce the number of clock cycles and increase the

parallelism and frequency of the design, even at the cost of

area. Typically, a scheduling method such as ASAP or

ALAP is used, resulting in an imbalance in the number of

instructions scheduled per clock cycle. In ASAP scheduling,

a large number of operations are executed within the first

few cycles, followed by fewer operations in the later cycles.

In ALAP scheduling, fewer operations are executed early

on, followed by a large number of operations in the last few

cycles. Both ASAP and ALAP produce schedules with the

same number of clock cycles. The benefit of balanced

scheduling over ASAP and ALAP is a uniform distribution

of operations among all clock cycles. Balanced operation

parallelism may also result in improved resource usage,

latency, power, and heat dissipation characteristics. Figure 1

illustrates the ASAP, ALAP, and balanced scheduling

routines. In the diagram, each operation node has a one-

cycle latency. In balanced scheduling, there is an even

distribution of operations among the four cycles. The other

methods show imbalanced number of operations per cycle.

Balanced scheduling is implemented in two stages. In the

first stage, dependency analysis is performed on each node,

in which the total number of parent dependencies in the

DAG hierarchy is determined. In Figure 1, the number of

node dependencies for each operation is shown for balanced

scheduling. The second stage uses the number of

dependencies to selectively forward nodes to later cycles in

order to balance operation parallelism.

Figure 2 presents our dependency analysis algorithm. It

accepts as arguments a block, B, and a mapping, D, of each

operation node to its number of dependencies. The algorithm

iterates topologically through the nodes in a block, adding

all unique predecessors to the node’s dependency list. Note

that the elements in both DMAP[p] and DMAP[n] are sorted

in the same order. This allows the addition of new nodes to

DMAP[p] to DMAP[n] in linear time, thereby preserving

the uniqueness and order of nodes in DMAP[n]. The size of

each node’s dependency list is then assigned to the map, D.

The algorithm has an O(n2) worst-case time complexity.

+ *

+*

-

*

ASAP Scheduling

>>

- +

*

*

*

>>

-

Balanced Scheduling

-

+

2

2 2

5

1

00

0
+

*

*

*

>>

-

ALAP Scheduling

-

+

+ *

+*

-

*

ASAP Scheduling

>>

-

+ *

+*

-

*

ASAP Scheduling

>>

- +

*

*

*

>>

-

Balanced Scheduling

-

+

2

2 2

5

1

00

0
+

*

*

*

>>

-

Balanced Scheduling

-

+

2

2 2

5

1

00

0
+

*

*

*

>>

-

ALAP Scheduling

-

++

*

*

*

>>

-

ALAP Scheduling

-

+

Figure 1. ASAP, ALAP, and Balanced scheduling routines.

 Dependency_Analysis(Block: B, Map: D)

1 topologically sort the nodes in B

2 DMAP is a mapping of nodes to their dependencies

3 for each node n in block B do

4 for each predecessor node p of n do

5 if p is an operation then

6 add each unique node in DMAP[p] to DMAP[n]

7 add p to DMAP[n]

8 for each node n in block B do

9 D[n] = DMAP[n].size()

Figure 2. Dependency analysis algorithm.

 Balanced_Scheduling(Graph: G)

 1 D is a mapping of nodes to dependency counts

 2 ASAP_Scheduling(G)

 3 for each block b in G do

 4 Dependency_Analysis(b, D)

 5 n_opers = 0

 6 for each operation node n in b do

 7 n_opers = n_opers + 1

 8 add n to T[n->GetTimeStep()]

 9 cycles = b->GetEndTime() - b->GetStartTime()

10 avg_load = n_opers / cycles

11 for each element t in T in reverse order do

12 time = t.time

13 ptime = t.time - 1

14 while T[time].size() < avg_load and

15 ptime >= b->GetStartTime() do

16 max_depend = 0

17 best_node = NULL

18 for each node n of T[ptime] do

19 bool fwd_node = true

20 wb_time = time + n->getCycles()

21 if wb_time > b->GetEndTime() then

22 fwd_node = false

23 for each successor s of n do

24 if wb_time >= s->GetTimeStep() then

25 fwd_node = false

26 if fwd_node and D[n] > max_depend

27 max_depend = D[n]

28 best_node = n

29 if best_node != NULL then

30 best_node->SetTimeStep(time)

31 T[ptime].remove(best_node)

32 add best_node to T[time]

33 else if T[time].size() < avg_load then

34 ptime = ptime - 1

35 else break

Figure 3. Balanced scheduling algorithm.

Our balanced scheduling routine is presented in

Figure 3, in which operation nodes are uniformly distributed

among cycles. The timestep for each node in the CDFG is

first initialized using ASAP scheduling in line 2. In lines 3–

35, it iterates over the CDFG to optimize the load balance in

each basic block. Dependency analysis is performed on the

Proceedings of the 8th International Symposium on Quality Electronic Design (ISQED'07)
0-7695-2795-7/07 $20.00 © 2007

nodes in the block in line 4. Lines 5–10 count the number of

operation nodes within the block, while adding each node to

a map, T, which groups nodes by timestep. The average load

balance per clock cycle is then computed. Lines 11–35

traverse T in reverse order, beginning with the latest cycle

(t). The algorithm searches for the best node to forward to

that cycle by traversing each preceding cycle (t-1, t-2, t-3,

etc.) until the earliest cycle in the block is reached. The

forwarding node is selected based on two criteria: (1) the

node has the largest number of dependencies and (2)

forwarding the node does not violate any latency constraints,

as described in lines 20–28. When a node is forwarded, T is

updated by remapping the forwarded node to its new cycle.

Once a cycle is balanced, or if it is not possible to balance it

after traversing all preceding cycles, the algorithm continues

on to balance the load in the next cycle in T (t-1).

An analysis of the algorithm reveals that the worst-case

situation occurs when forwarding is not possible for any

node. This results in O(nt) time complexity, where n is the

number of operations in the block and t is the number of

cycles after ASAP scheduling. If the DAG is very narrow,

i.e., there is one node scheduled per state cycle such that

t ≈ n, the complexity resolves to O(n2). However, since most

CDFGs consist mainly of tree-like structures, on average we

can expect t ≈ log n, yielding an average time complexity of

O(n log n). The worst case time complexity is therefore

dominated by the O(n2) dependency analysis algorithm.

+ *

+*

-

*

+ *

+*

-

*

+ *

+
*

-

*

Critical Delay = 5 ns Critical Delay = 15 ns Critical Delay = 5 ns

No Chaining Unconstrained Chaining Balanced Chaining

+ *

+*

-

*

+ *

+*

-

*

+ *

+
*

-

*

Critical Delay = 5 ns Critical Delay = 15 ns Critical Delay = 5 ns

No Chaining Unconstrained Chaining Balanced Chaining

Figure 4. Comparison of chaining methods.

To illustrate balanced scheduling further, refer back to

Figure 1. The CDFG is initialized with ASAP scheduling,

assuming each node has a one-cycle latency. Dependency

analysis is performed on each node, as shown in the figure,

and the load balance is determined to be 2 (8 nodes/4 states).

In a bottom-up approach, beginning at the fourth state, one

node is required to balance the load. The algorithm traverses

the preceding states to find a node to forward to the fourth

state. Beginning in the third state, a single subtract operation

is found, but the 1-cycle latency prevents it from being

forwarded. In the second state, the multiply and subtract

operators have the same number of dependencies, but only

the subtract operation has no latency restriction. Therefore,

it is selected and forwarded to the fourth state. Since the

fourth state is now balanced, we continue on to the third

state, which also requires a single node. Beginning with state

two, the multiply operation has the most dependencies and

no latency restriction, so it is forwarded to state three. Now

the second state requires a single node to balance. Looking

to the first state, all three operations have the same number

of dependencies, but only the add and shift operations have

no latency restriction. The add operation is encountered first

and is forwarded to the second state. Finally, the first state is

already balanced so the procedure is complete.

4. Balanced Chaining

While balanced scheduling can significantly improve

the distribution of operations among cycles compared to

ASAP and ALAP scheduling, it does not consider variations

in the operation delays. To obtain optimal performance, it is

essential to consider the operation delays when scheduling

and chaining operations. In this section we present our

balanced chaining algorithm, which uses a delay modeling

technique to predict the critical path of a design. We also

present our methodology for obtaining accurate delay

models of operations during high-level synthesis. These

models are then used to obtain better timing performance

during scheduling by efficiently chaining RTL operations

within each state of a finite state machine.

Consider the DAGs shown in Figure 4 with three

different scheduling routines. We assume that multiplication

operations have delays of 5 ns, while addition and

subtraction operations have delays of 2 ns. In the first case,

ASAP scheduling without chaining would require 4 cycles.

The critical delay, or the worst-case path delay, is 5 ns,

resulting in a maximum frequency of 200 MHz. It would

take a total of 20 ns to complete the computations.

A naïve approach to operation chaining would schedule

three multiplies within a single cycle, as shown in the second

figure. The resulting implementation takes 15 ns to

complete, which is faster than the unchained approach.

However, after closer inspection, it is apparent that the

critical path can be balanced by chaining only the add-

subtract operation sequence. This results in 3 cycles and a

critical delay of 5 ns, as shown in the third figure. It is

interesting to note that although the balanced chaining

schedule runs in the same time as the unconstrained chaining

schedule, it produces a maximum allowed frequency of 200

MHz compared to 67 MHz in the latter case. This portion of

the circuit will not operate in isolation: its maximum

frequency will influence the performance of the entire

design. Consequently, the higher frequency yielded by the

proposed balanced chaining technique has the potential to

improve the performance of the entire design.

4.1. Modeling Delays

In order to obtain an optimal scheduling of operations,

it is essential to accurately model operation delays.

Generally, operation delays depend on the FPGA

architecture and the precision of the calculation. It is

therefore necessary to obtain delay estimates for varying bit-

widths of each operation for each target FPGA architecture.

Proceedings of the 8th International Symposium on Quality Electronic Design (ISQED'07)
0-7695-2795-7/07 $20.00 © 2007

Our method of delay modeling is based on previous

work by Jiang et al. [13]. This work demonstrates that it is

possible to accurately model the delay, area, and power of

operations for ASICs with constant, linear, and quadratic

equations. This process consists of two steps: acquiring the

operation delays for varying bit-widths and creating high-

level equations to model the delay of each operation as a

function of precision.

In acquiring operation delays, one may use values from

different stages during the design and synthesis process. For

the sake of accuracy, values should be obtained at or below

the synthesis stage. We used delay values after synthesis

using Synplicity’s Synplify Pro tool. Our goal is to obtain

frequency results that well approximate those reported by

the synthesis tool. Since the synthesis tool generally

performs many transformations on the RTL code, it is

essential to obtain accurate values for each bit-width. This is

accomplished by synthesizing each arithmetic and logical

operation type individually and acquiring delays for bit-

widths of 2, 4, 8, 16, 32, 48, 56, and 64 bits. The delays are

plotted and a best-fit curve is found to approximate the delay

model as a function of precision.

Jiang et al. [13] have categorized their models into

constant, linear, and quadratic equations. We have chosen to

use a cubic equation in all delay models for the following

reasons. We have found through experimentation that the

delays of many operations in FPGAs were discontinuous

linear functions of precision. These nonlinear characteristics

are often due to high-level optimizations. For instance, a

2-bit add operation can be replaced with a combination of

simple logic gates, resulting in reduced delay for low

precision operations. Similarly, operations with higher

precisions often require additional levels of logic that

increase the delay. These optimizations often produce

varying slopes in the model, requiring cubic expressions to

attain higher-accuracy in the delay models. Piecewise-linear

models may have also been used, but cubic expressions were

chosen for the sake of simplicity. Incidentally, operations

that exhibit constant, linear, or quadratic properties can also

be modeled with cubic expressions.

In estimating the operation delays, we can expect a

certain margin of error. If a consistent method is used to

obtain the delays for all operations, one can expect the

margin of error to be similar among all the operation delay

models. Therefore, even with a margin of error, the critical

path may nonetheless be identified correctly for determining

the best chaining of operations.

4.2. Balanced Chaining Algorithm

In RTL VHDL and Verilog, operation chaining is

accomplished by assigning the result of a computation using

the blocking operator (=) rather than non-blocking operator

(<=). This allows the resulting value to be used immediately

instead of in the next clock cycle (state). Operation chaining

is implemented on an operation node in a CDFG by

assigning a cycle delay of zero. The cycle delay is used

when scheduling each node in a finite state machine.

 Balanced_Chaining(Graph: G, double: frequency)

 1 if frequency < 1.0 then frequency = 1.0

 2 critical_delay = 1000 / frequency

 3 D is a mapping of operation nodes to delay

 4 for each block b in G do

 5 for each node n in b do

 6 D[n] = Get_Operation_Delay(n)

 7 if D[n] > critical_delay then

 8 critical_delay = D[n]

 9 if n has successors and n->getCycles()==1

10 n->setCycles(0)

11 for each block b in G do

12 topologically sort nodes in b

13 for each node n in b in reverse order do

14 for each predecessor node p of n do

15 D[p] = Get_Operation_Delay(p)

16 total_delay = D[p] + D[n]

17 if p->getCycles() == 0 then

18 if total_delay > critical_delay then

19 p->setCycles(1)

20 else if total_delay <= critical_delay

21 and total_delay > D[p] then

22 D[p] = total_delay

Figure 5. Balanced chaining algorithm.

Figure 5 presents our balanced chaining algorithm,

which minimizes the clock cycles and critical path in the

input graph, G, given an input target frequency. This is

accomplished by assigning a one-cycle delay to operations

in a sequence that exceeds the critical delay, thereby

inserting registers in strategic places to balance the critical

path. This chaining method uses a uniform cycle delay

between an operation and each of its successor nodes.

However, the algorithm can be easily adapted to handle

varying cycle delays for each outgoing edge. The target

frequency is upper-bounded by the slowest operation in the

design and lower-bounded by 1 MHz, which is essentially

equivalent to running unconstrained chaining. Note that even

in an unconstrained chaining implementation there may exist

multi-cycle operations, such as loads and stores, which limit

the chaining of operations.

The algorithm begins in lines 3–10 by iterating through

the nodes in the CDFG. In lines 6–8, each operation node is

mapped to its predicted delay for the target architecture

based on the model described above. While doing so, the

critical delay is updated, which is the worst-case path delay

of any sequence of chained operations in the CDFG. In lines

9–10, the CDFG is initialized to unconstrained chaining by

assigning a cycle delay of zero for each operation node.

Chaining is performed in lines 11–22. The nodes in the

CDFG are first topologically sorted, and then traversed

bottom-up. The delay of each node is recalculated based on

the delay of its predecessor nodes in lines 15–16. If the

combined delay of a node and its predecessor is greater than

the critical delay, the predecessor node is unchained by

setting its delay to one cycle in lines 18–19. Otherwise, the

delay of the predecessor node is updated with the total path

delay in lines 20–22. It is evident that the algorithm runs in

linear time with the number of nodes in the CDFG.

5. Experimental Results

We evaluated the scheduling and chaining techniques

Proceedings of the 8th International Symposium on Quality Electronic Design (ISQED'07)
0-7695-2795-7/07 $20.00 © 2007

proposed in this paper on various benchmarks. The

benchmarks were originally available in C, and compiled to

assembly code using the Texas Instruments Code Composer

StudioTM software suite, targeting the C6211 DSP

architecture. The assembly codes were compiled to RTL

VHDL and Verilog using the FREEDOM compiler [6][7],

while using the scheduling techniques outlined here to target

the Xilinx Virtex II FPGA. The RTL codes were synthesized

using the Synplicity Synplify Pro logic synthesis tool. These

synthesis results were used to obtain estimated frequency

results for each benchmark. The execution times on the

FPGAs were measured using the number of clock cycles in

the simulation and the frequency results from the synthesis

process. The estimated delay models for balanced chaining

were based on data gathered for this FPGA architecture

using the Synplify Pro synthesis tool.

Table 1 shows timing results for ASAP, ALAP, force-

directed, and balanced scheduling with unconstrained

chaining, which produces the minimum number of cycles

possible among the scheduling routines. The objective is

then to maximize the frequency within this time frame. With

balanced scheduling, we see that a uniform distribution of

operations among the cycles improves the frequency

dramatically over ASAP, ALAP, and force-directed

scheduling for nearly all benchmarks. This is due to the fact

that these scheduling routines may often cluster numerous

time-consuming operations in sequence, resulting in long

critical paths. Balanced scheduling, however, partitions the

long critical paths in the design by distributing the

operations evenly among the states. Variations in frequency

for laplace and iir are caused by the naïve partitioning of the

critical path. The minor variations in the data path can cause

the back-end synthesis tool to make substantial changes in

design implementations that affect the overall frequency.

Table 2 shows comparisons of the same benchmarks

with no chaining, unconstrained chaining, and balanced

chaining. For the latter case, a target frequency of 500 MHz

was chosen to achieve the maximum frequency in the

design. As expected, the number of clock cycles for

balanced chaining increased over that of unconstrained

chaining due to reduced chaining. However, we see dramatic

increases in frequency as well as significant improvements

in performance over that of an unconstrained chaining

approach. The delay estimations for ellip, laplace, and sobel

were hampered by extra logic inserted by the synthesis tool

in the critical path. However, the difference was within a

10% margin of error, as compared to the best results. On

average we observe approximately a 20% speedup over all

benchmarks as compared to the best results yielded by the

other chaining methods. It is interesting to note that the

frequency results for balanced chaining are very close to

those reported for scheduling without chaining, which one

would expect to be the maximum achievable frequency for

each benchmark. This supports our claim that it is indeed

possible to effectively predict the critical delays of a design

at an abstract level in order to optimize the chaining of

operations during scheduling.

Table 1. Scheduling comparison for Xilinx Virtex II.
 ASAP ALAP FORCE-DIRECT BALANCED

 Cycles Freq
(MHz)

Time
(µs)

Freq
(MHz)

Time
(µs)

Freq
(MHz)

Time
(µs)

Freq
(MHz)

Time
(µs)

dotprod 1204 54.8 22.0 68.5 17.6 97.5 12.3 111.5 10.8

Iir 2704 54.6 49.5 50.1 54.0 69.6 38.9 61.9 43.7

matmul 111909 103.0 1086.5 70.9 1578.4 90.4 1237.9 103.0 1086.5

Gcd 66 215.6 0.3 211.1 0.3 167.8 0.4 215.6 0.3

Diffeq 58 20.4 2.8 26.6 2.2 28.4 2.0 42.4 1.4

Ellip 53 124.9 0.4 146.8 0.4 129.9 0.4 166.9 0.3

laplace 5528 150.5 36.7 109.7 50.4 120.1 46.0 131.8 41.9

fir16tap 14948 103.7 144.1 71.3 209.6 90.5 165.2 103.7 144.1

fircmplx 2852 54.4 52.4 47.8 59.7 62.3 45.8 78.7 36.2

Sobel 18891 108.8 173.6 80.6 234.4 74.5 253.6 111.7 169.1

Table 2. Chaining comparison for Xilinx Virtex II.
 NO CHAINING UNCONSTR. CHAINING BALANCED CHAINING

 Cycles Freq
(MHz)

Time
(µs)

Cycles Freq
(MHz)

Time
(µs)

Cycles Freq
(MHz)

Time
(µs)

Dotprod 1654 145.1 11.4 1204 111.5 10.8 1304 146.2 8.9

Iir 6306 103.8 60.8 2704 58.2 46.5 4204 136.0 30.9

Matmul 171528 146.1 1174.0 111909 103.0 1086.5 120101 146.2 821.5

Gcd 118 187.8 0.6 66 215.6 0.3 67 215.6 0.3

Diffeq 156 143.1 1.1 58 42.4 1.4 94 143.3 0.7

Ellip 66 168.1 0.4 53 166.9 0.3 59 161.4 0.4

Laplace 9221 189.5 48.7 5528 150.5 36.7 6638 173.1 38.3

fir16tap 23386 145.1 161.2 14948 103.7 144.1 15912 145.2 109.6

fircmplx 3924 102.3 38.4 2852 78.7 36.2 3012 102.3 29.4

Sobel 33563 148.0 226.8 18891 111.7 169.1 22611 132.0 171.3

Table 3. Performance results in a high-level synthesis tool.
TI C6211 DSP Xilinx Virtex II FPGA

 Cycles Time
(µs)

Cycles Freq
(MHz)

Time
(µs)

Speedup
(Cycles)

Speedup
(Time)

MPEG-4 Video Decoder

Texture_idct 275156 917.2 3584 111.9 32.0 76.8 28.6

Motion_comp 73447 244.8 4176 130.8 31.9 17.6 7.7

memory_ctrl 202294 674.3 4838 148.7 32.5 41.8 20.7

Texture_update 34888 116.3 1105 118.3 9.3 31.6 12.5

Viterbi Decoder

Decode_acs 2285337 7617.8 71029 131.5 540.1 32.2 14.1

Flush_decoder 36743 122.5 1304 106.4 12.3 28.2 10.0

JPEG 2000 Encoder

fdct_ifast 313024 1043.4 4850 110.6 43.9 64.5 23.8

fdct_islow 422404 1408.0 6101 116.6 52.3 69.2 26.9

mcu_huff 227206 757.4 5654 119.3 47.4 40.2 16.0

In order to verify that the proposed techniques function

on large, complex problems, we compare their performance

on three benchmarks, each of which has a complexity on the

order of many thousands of operations. The designs were

compiled from C to the TI C6211 DSP architecture, and the

assembly codes were then compiled to the Xilinx Virtex II

FPGA with the FREEDOM compiler using our balanced

chaining routine to optimize the timing performance. Table 3

shows these results compared to that of the TI C6211 DSP

with a clock frequency of 300 MHz, the maximum

frequency for that architecture. Interestingly, the balanced

chaining technique allowed us to obtain frequency results for

all kernels in excess of 100 MHz, and speedups ranging

from 8–29× over the DSP.

The MPEG-4 decoder showed a performance speedup

of 29× for the largest block, texture_idct. The algorithms

implemented in this block are more computationally

intensive and require fewer memory accesses. The motion

compensation block contains numerous memory accesses

that cannot be reduced through optimizations. Hence it

Proceedings of the 8th International Symposium on Quality Electronic Design (ISQED'07)
0-7695-2795-7/07 $20.00 © 2007

shows the least gain: an 8× speedup. The Viterbi decoder

showed the best-case speedup of 14× for the larger

decode_acs module. This module is less memory bound and

has very few conditional control structures. The second

module is larger in code size and contains some control

structures that cannot be eliminated. It also makes several

function calls in order to calculate decision metrics.

Operations cannot be moved across function boundaries by

the compiler. This lowers the amount of fine grain

parallelism available in the hardware design. Nevertheless, a

10× speedup has been observed for this block. The JPEG

2000 encoder showed a speedup of 24× for the fast DCT and

27× for the slow one, while the Huffman encoder showed a

speedup of 16×.

6. Conclusions

When good delay estimations are not available for

FPGAs, high-level synthesis tools often use unconstrained

chaining in scheduling to reduce the number of cycles in the

design. In this paper we present a balanced scheduling

routine that uniformly distributed operations among states in

O(n2) time, on average. This effectively breaks up large

critical paths in the design and improves the frequency by

distributing operations among logic blocks in FPGAs more

efficiently. Results indicate that this technique performs

better than ASAP, ALAP, and force-directed scheduling.

With good delay estimation and modeling methods,

better-quality chaining is possible. Towards this effort, we

have developed precision-based delay models to estimate

operation delays in FPGAs. This technique was incorporated

in our balance chaining routine. Given a target frequency,

balanced chaining uses these delay models to reduce the

cycles and critical path in the design by chaining operations

within the given critical delay in O(n) time. Results on ten

benchmarks show that the proposed balanced chaining

technique significantly improves frequency and run times.

Furthermore, our method for modeling operation delays is

shown to accurately identify the critical paths of complex

designs during high-level synthesis for different FPGA

architectures. Consequently, when using balanced chaining,

the balanced scheduling technique is no longer essential.

Our balanced scheduling technique was tested on a set

of large applications, including an MPEG-4 decoder, Viterbi

decoder, and a JPEG 2000 encoder. Experimental Results

indicate that the balanced chaining technique can

successfully produce FPGA designs that operate at

frequencies in excess of 100 MHz even for large

applications. Balanced chaining have shown approximately

20% increase in performance on average over other chaining

routines. By incorporating this routine in a high-level

synthesis tool we have shown 8–29× improvements in FPGA

performance for large, complex applications over a DSP

architecture. This supports our claim that it is indeed

possible to effectively predict the critical delays of a design

at an abstract level in order to optimize the chaining of

operations during scheduling.

In future work it would be interesting to evaluate the

effects of balanced scheduling and balanced chaining on the

power and thermal properties of FPGA designs with varying

sampling periods. It would also be interesting to explore the

use of retiming in combination with the proposed delay

models during early stages of design.

7. References

[1] G. De Micheli, Synthesis and Optimization of Digital Circuits.

McGraw Hill, 1994.

[2] P. Paulin and J. Knight, “Force-Directed Scheduling for the

Behavioral Synthesis of ASICs,” in IEEE Transactions on

Computer-Aided Design, vol. 8, no. 6, June 1989.

[3] P. Paulin and J. Knight, “Scheduling and Binding Algorithms

for High-Level Synthesis,” in Proceedings of the Design and

Automation Conference, Las Vegas, NV, June 1989.

[4] W. Verhaegh, P. Lippens, E. Aarts, J. Korst, A. Werf, and J.

Meerbergen, “Efficiency Improvements for Force-Directed

Scheduling,” in Proceedings of the IEEE/ACM International

Conference on Computer-Aided Design, Nov. 1992.

[5] D. Kerns and S. Eggers, “Balanced Scheduling: Instruction

Scheduling when Memory Latency is Uncertain,” in ACM

SIGPLAN Notices, vol. 39, issue 4, Apr. 2004.

[6] G. Mittal, D. Zaretsky, X. Tang, and P. Banerjee, “Automatic

Translation of Software Binaries onto FPGAs,” in Proceedings

of the 41st Annual Conference on Design Automation, 2004.

[7] D. Zaretsky, G. Mittal, X. Tang, and P. Banerjee, “Overview of

the FREEDOM Compiler for Mapping DSP Software to

FPGAs,” in Proceedings of the 12th Annual IEEE Symposium

on Field-Programmable Custom Computing Machines, CA,

2004.

[8] A. Srinivasan, G. Huber, and D. LaPotin, “Accurate Area and

Delay Estimations from RTL Descriptions,” in IEEE

Transactions on VLSI Systems, vol. 6, no. 1, March 1998.

[9] M. Nemani and F. Najm, “Delay Estimation of VLSI Circuits

from a High-Level View,” in Proceedings of the 35th Annual

Design Automation Conference, San Francisco, CA, 1998.

[10] M. Nourani and C. Papachristou, “False Path Exclusion in

Delay Analysis of RTL-Based Datapath-Controller Designs,”

in Proceedings of the Conference on European Design

Automation, Geneva, Switzerland, Sept. 1996.

[11] M. Xu and F. Kurdahi, “Area and Timing Estimation for

Lookup Table Based FPGAs,” in Proceedings of the 1996

European Conference on Design and Test, Mar. 1996.

[12] A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee,

“Accurate Area and Delay Estimators for FPGAs,” in

Proceedings of the Conference on Design, Automation and

Test in Europe, Mar. 2002.

[13] T. Jiang, X. Tang, and P. Banerjee, “Macro-models for high

level area and power estimation on FPGAs,” in Proceedings of

the 14th ACM Great Lakes symposium on VLSI, Boston, MA,

Apr. 2004.

[14] C. E. Leiserson and J. B. Saxe, “Retiming Synchronous

Circuitry,” in Algorithmica, Vol. 6, No. 1, 1991.

[15] S. Malik, E. Sentovich, R. Brayton, and A. Sangiovanni-

Vincentelli, “Retiming and Resynthesis: Optimization of

Sequential Networks with Combinational Techniques,” in

IEEE Transactions on Computer-Aided Design of Integrated

Circuits, Jan. 1991.

[16] H. Zhou, V. Singhal, and A. Aziz, “How Powerful is

Retiming?” in Proceedings of the IEEE/ACM International

Workshop on Logic Synthesis, May 1998.

Proceedings of the 8th International Symposium on Quality Electronic Design (ISQED'07)
0-7695-2795-7/07 $20.00 © 2007

