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Abstract. High-level synthesis tools generally convert abstract designs 
described in a high-level language into a control and data flow graph (CDFG), 
which is then optimized and mapped to hardware. However, there has been little 
work on generating CDFGs from highly pipelined software binaries, which 
complicate the problem of determining data flow propagation and 
dependencies. This paper presents a methodology for generating CDFGs from 
highly pipelined and scheduled assembly code that correctly represents the data 
dependencies and propagation of data through the program control flow. This 
process consists of three stages: generating a control flow graph, linearizing the 
assembly code, and generating the data flow graph. The proposed methodology 
was implemented in the FREEDOM compiler and tested on 8 highly pipelined 
software binaries. Results indicate that data dependencies were correctly 
identified in the designs, allowing the compiler to perform complex 
optimizations to reduce clock cycles. 

1  Introduction 

Traditionally, the high-level synthesis problem is one of transforming an abstract, 
timing-independent specification of an application into a detailed hardware design. 
High-level synthesis tools generally convert the abstract design into a control and data 
flow graph (CDFG) that is composed of nodes representing inputs, outputs, and 
operations. The CDFG is a fundamental component of most compilers, where most 
optimizations and design decisions are performed to improve frequency, power, 
timing, and area. Building a CDFG consists of a two-step process: building the control 
flow graph (CFG), which represents the path of control in the design, and building the 
data flow graph (DFG), which represents the data dependencies in the design. 
However, when high-level language constructs are not readily available, such as in the 
case where legacy code for an application on an older processor is to be migrated to a 
new processor architecture, a more interesting problem presents itself, known as 
binary translation. Much research has been performed on CDFG generation from 
software binaries and assembly code. However, there has been very little work on 
generating complete CDFGs from scheduled or pipelined software binaries. Data 



dependency analysis of such binaries is more challenging than that of sequential 
binaries or high-level language applications.  

When translating assembly codes from digital signal processors (DSPs), it is 
common to encounter highly pipelined software binaries that have been optimized 
manually or by a compiler. Consider the Texas Instrument C6000 DSP assembly code 
for the vectorsum function in Figure 1. In this architecture, branch operations contain 
5 delay slots and loads contain 4 delay slots. The | | symbol indicates the instruction is 
executed in parallel with the previous instruction and the [ ] symbol indicates the 
operation is predicated on an operand. Clearly, the vectorsum code is highly 
pipelined; each branch instruction is executed in consecutive iterations of the loop. 
Moreover, the dependencies of the ADD instruction in the loop body change with 
each iteration of the loop: A6 is dependent on the load at instruction 0x0004 in the 
first iteration of the loop, A6 is dependent on the load at instruction 0x000C in the 
second iteration of the loop, etc. Generating a CDFG to represent this pipelined 
structure is very challenging. In doing so, one must consider the varying data 
dependencies and also ensure that each branch is executed at its proper time and 
place. Branch instructions that fall within the delay slots of other branch instructions 
complicate the structure of the control flow graph. For instance, when the predicate 
condition, A1, on the branch instruction in the loop body is false, the previous branch 
instructions that were encountered during the execution sequence will continue to 
propagate and execute. This may occur within the loop, or possibly after exiting the 
loop. More complex software pipelines may contain branch instructions with various 
targets, producing multiple exit points in a CDFG block. 

 
 
0x0000 VECTORSUM:   ZERO  A7 

0x0004              LDW   *A4++, A6   ; 4 delay slo ts 

0x0008      ||      B     LOOP        ; 5 delay slo ts 

0x000C              LDW   *A4++, A6   

0x0010      ||      B     LOOP      

0x0014              LDW   *A4++, A6   

0x0018      ||      B     LOOP       

0x001C              LDW   *A4++, A6   

0x0020      ||      B     LOOP       

0x0024              LDW   *A4++, A6   

0x0028      ||      B     LOOP  

0x002C      ||      SUB   A1, 4, A1 

0x0030 LOOP:        ADD   A6, A7, A7   

0x0034      || [A1] LDW   *A4++, A6   

0x0038      || [A1] SUB   A1, 1, A1    

0x003C      || [A1] B     LOOP        ; branches ex ecutes here 

0x0040              STW   A7, *A5 

0x0044              NOP   4 

Fig. 1. TI C6000 assembly code for a pipelined vectorsum procedure 

 



In this paper, we present a methodology for generating CDFGs from scheduled and 
pipelined assembly code. This process consists of three stages: generating a control 
flow graph, linearizing the assembly code, and generating the data flow graph. We use 
the methods described by Cooper et al. [6] for generating a CFG from scheduled 
assembly code. In addition, we extend their work to support more complex 
architectures that employ parallel instruction sets and dynamic branching. We also 
present a linearization process, in which pipelined structures are serialized into linear 
assembly. This allows for proper data dependency analysis when constructing data 
flow graphs. This methodology was incorporated in the FREEDOM compiler, which 
translates DSP assembly code into hardware descriptions for FPGAs. The techniques 
described in this paper were briefly discussed in previous work [11,19]; here we 
present a more refined and elegant approach in greater detail. 

The remainder of this paper is structured as follows: Section 2 discusses related 
work in the area of CDFG generation from assembly code. Section 3 provides an 
overview of the FREEDOM compiler infrastructure and its intermediate language 
architecture. Section 4 describes our method of generating a CDFG from scheduled 
and pipelined assembly code in detail. Finally, Sections 5 and 6 present experimental 
results and conclusions, respectively. 

2 Related Work 

There has been a great deal of fundamental research and study of binary translation 
and decompilation. Cifuentes et al. [3,4,5] described methods for converting assembly 
or binary code from one processor’s instruction set architecture (ISA) to another, as 
well as decompilation of software binaries to high-level languages. Kruegel et al. [9] 
described a technique for decompilation of obfuscated binaries. Stitt and Vahid 
[16,17] reported work on hardware-software partitioning of software binaries. Levine 
and Schmidt [10] proposed a hybrid architecture called HASTE, in which instructions 
from an embedded processor are dynamically compiled onto a reconfigurable 
computational fabric using a hardware compilation unit. Ye et al. [18] developed a 
similar compiler system for the CHIMAERA architecture. 

Control and data flow analysis is essential to binary translation. Cifuentes et al. [5] 
described methods of control and data flow analysis in translating assembly to a high-
level language. Kastner and Wilhelm [8] reported work on generating CFGs from 
assembly code. Decker and Kastner [7] described a method of reconstructing a CFG 
from predicated assembly code. Amme et al. [1] presented work on a memory aliasing 
technique, in which data dependency analysis is computed on memory operations 
using a value-based analysis and modified version of the GCD test [2].  

There has been very little work on generating CDFGs from highly pipelined 
software binaries in which branch instructions appear in the delay slots of other 
branch instructions. The most comprehensive work on building CFGs from pipelined 
assembly code was reported by Cooper et al. [6]. However, their method does not 
consider the complexities of modern processor architectures that utilize instruction-
level parallelism and dynamic branching techniques. In this paper, we address these 



issues and present methods to handle CDFG generation from software binaries that 
feature these sophisticated scheduling techniques.  

3 Overview of the FREEDOM Compiler 

This section provides a brief overview of the FREEDOM compiler infrastructure, 
as shown in Figure 2. The compiler was designed to have a common entry point for 
all assembly languages. Towards this effort, the front-end uses a description of the 
source processor’s ISA in order to configure the assembly language parser. The ISA 
specifications are written in SLED from the New Jersey Machine-Code toolkit 
[14,15]. The parser generates a virtual assembly representation called the Machine 
Language Syntax Tree (MST), which has a syntax similar to the MIPS ISA. The MST 
is generic enough to encapsulate most ISAs, including those that support predicated 
and parallel instruction sets. All MST instructions are three-operand, predicated 
instructions in the format: [pred] op src1 src2 dst. A CDFG is generated from the 
MST, where optimizations, scheduling, and resource binding are preformed. The 
CDFG is then translated into a high-level Hardware Description Language (HDL) that 
models processes, concurrency, and finite state machines. Additional optimizations 
and customizations are performed on the HDL for the target architecture. This 
information is acquired via the Architecture Description Language (ADL) files. The 
HDL is translated directly to RTL VHDL and Verilog to be mapped onto FPGAs, and 
a testbench is generated to verify that the output is correct.  
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Fig. 2. Overview of the FREEDOM compiler infrastructure 

 
The fixed number of physical registers on a processor necessitates advanced 

register reuse algorithms in compilers. These optimizations often introduce false 
dependencies based on register names, resulting in difficulties when determining data 
dependencies for scheduled or pipelined binaries and parallel instruction sets. To 
resolve these discrepancies, each MST instruction is assigned a timestep, specifying a 



linear instruction order, and an operation delay, equivalent to the number of execution 
cycles. Each cycle begins with an integer-based timestep, T. Each instruction n in a 
parallel instruction set is assigned the timestep Tn = T + (0.01 * n). Assembly 
instructions may be translated into more than one MST instruction. Each instruction m 
in an expanded instruction set is assigned the timestep Tm = Tn + (0.0001 * m). The 
write-back time for the instruction, or the cycle in which the result is valid, is defined 
as wb = timestep + delay. If an operation delay is zero, the resulting data is valid 
instantaneously. However, an operation with delay greater than zero has its write-back 
time rounded down to the nearest whole number, or floor(timestep), resulting in valid 
data at the beginning of the write-back cycle. 

Figure 3 illustrates how the instruction timestep and delay are used to determine 
data dependencies in the MST. In the first instruction, the MULT operation has one 
delay slot, and the resulting value in register A4 is not valid until the beginning of 
cycle 3. In cycle 2, the result of the LD instruction is not valid until the beginning of 
cycle 7, and the result of the ADD instruction is not valid until the beginning of cycle 
3. Consequently, the ADD instruction in cycle 3 is dependant upon the result of the 
MULT operation in cycle 1 and the result of the ADD operation in cycle 2. Likewise, 
the first three instructions are dependant upon the same source register, A4. 

 
TIMESTEP    PC     OP   DELAY  SRC1   SRC2   DST  

 1.0000   0X0020   MULT  (2)   $A4,    2,    $A4  

 2.0000   0X0024   LD    (5)  *($A4),        $A2  

 2.0100   0X0028   ADD   (1)   $A4,    4,    $A2 

 3.0000   0X002c   ADD   (1)   $A4,    $A2,  $A3  

Fig. 3. MST instructions containing timesteps and delays for determining data dependencies 

4 Building a Control and Data Flow Graph 

This section presents our methodology for generating a CDFG from scheduled and 
pipelined assembly code. This process consists of three stages: generating a control 
flow graph, linearizing the assembly code, and generating a data flow graph.  

4.1 Generating a Control Flow Graph 

Cooper et al. [6] presented a three-step process for building a CFG from scheduled 
assembly code, which was used as the first stage in the proposed work. The first step 
of their algorithm partitions the code at labels (entry points) into a set of basic blocks. 
During this process, they assume all entry points are complete, and no branch targets 
an instruction without a label. The second step adds edges between basic blocks in the 
CFG to represent the normal flow of control. Here, they only consider non-pipelined 
branch instructions, or those that do not appear within the delay slots of other branch 
instructions. Pipelined branches are handled in the third step using an iterative 
algorithm that simulates the flow of control for the program by propagating branch 
and counter information from block to block. Their method is shown to terminate in 



linear time for CFGs containing only branches with explicit targets. Figure 4 
illustrates the CFG generated for the vectorsum procedure in Figure 1. 

 

0x0000 VECTORSUM:   ZERO  A7
0x0004              LDW   *A4++, A6  
0x0008      ||      B     LOOP    
0x000C              LDW   *A4++, A6  
0x0010      ||      B     LOOP     
0x0014              LDW   *A4++, A6  
0x0018      ||      B     LOOP      
0x001C              LDW   *A4++, A6  
0x0020      ||      B     LOOP      
0x0024              LDW   *A4++, A6  
0x0028      ||      B     LOOP 
0x002C      ||      SUB   A1, 4, A1

0x0030 LOOP:        ADD   A6, A7, A7  
0x0034      || [A1] LDW   *A4++, A6  
0x0038      || [A1] SUB   A1, 1, A1   
0x003C      || [A1] B     LOOP  

0x0040              STW   A7, *A5

0x0044              NOP   1

0x0044              NOP   1

0x0044              NOP   1

0x0044              NOP   1

0x0000 VECTORSUM:   ZERO  A7
0x0004              LDW   *A4++, A6  
0x0008      ||      B     LOOP    
0x000C              LDW   *A4++, A6  
0x0010      ||      B     LOOP     
0x0014              LDW   *A4++, A6  
0x0018      ||      B     LOOP      
0x001C              LDW   *A4++, A6  
0x0020      ||      B     LOOP      
0x0024              LDW   *A4++, A6  
0x0028      ||      B     LOOP 
0x002C      ||      SUB   A1, 4, A1

0x0030 LOOP:        ADD   A6, A7, A7  
0x0034      || [A1] LDW   *A4++, A6  
0x0038      || [A1] SUB   A1, 1, A1   
0x003C      || [A1] B     LOOP  

0x0040              STW   A7, *A5

0x0044              NOP   1

0x0044              NOP   1

0x0044              NOP   1

0x0044              NOP   1

 

Fig. 4. Control flow graph for vectorsum  

 
In practice, the assumptions made in their work pose some difficulties in 

generating CFGs for some modern processor architectures. For instance, they assume 
all labels and branch targets are well defined. However, some disassemblers limit the 
labels to a procedure level only and refrain from including them locally within 
procedure bounds. In some architectures, registers may be used in branch targets, as in 
the case of a long jump where a static PC value is loaded into the register prior to the 
branch instruction. To handle these situations, we introduce a pre-processing step that 
determines all static branch targets and adds the respective labels to the instructions. 
Some architectures may also support dynamic branch targets, in which the destination 
value may be passed to a register as a function parameter, such as with procedure 
prologues and epilogues. In these situations, we take an optimistic approach by 
assuming the dynamic branch operation is a procedure call. The branch is temporarily 
treated as a NOP instruction when building the initial CFG to allow the control flow 
to propagate through. We rely on post-processing steps, such as alias analysis and 
procedure extraction to determine the possible destinations [12]. The CFG is then 
regenerated with the newly identified destination values. 



Many of today’s processor architectures utilize instruction-level parallelism to 
achieve higher performances, which complicates generation of CFGs. For instance, a 
branch destination may have a target within a parallel set of instructions. This would 
break up the control flow at intermediate points within a basic block, creating 
erroneous data dependencies. In Figure 5, the ADD, SUB, and SRL instructions are 
scheduled in parallel. However, if the predicated branch is taken, the ADD instruction 
is not executed. Consequently, the entry label on the SUB instruction partitions the 
control flow in the middle of the parallel set, placing the latter two instructions in a 
separate basic block. This forces the A7 operand in the SRL instruction to use the 
resulting value from the ADD instruction in the previous block. To account for such 
discrepancies, we introduce a procedure that checks for entry points (labels) within a 
parallel set of instructions. If such an entry point exists, the instructions falling below 
the entry point are replicated and added to the top portion of the parallel set. Figure 6 
shows the MST code after instruction replication. The SUB and SRL instructions have 
been replicated and a branch operation has been added to jump over the replicated 
code segment. We rely on subsequent optimizations in the CDFG, such as code-
hoisting [13], to eliminate superfluous operations. 
 

0x0800        [A1] B     L1  

0x0804             NOP   5 

0x0808             ADD   A4, A7, A7   

0x080C  L1: ||     SUB   A4, 1, A4   

0x0810      ||     SRL  A4, A7, A8  

0x0814  L2:        ...  

Fig. 5. Branch target inside a parallel instruction set 

 

10.0000  0x0800   [A1] GOTO (6) L1  

11.0000  0x0804        NOP  (5) 5 

16.0000  0x0808        ADD  (1) $A4, $A7, $A7 

16.0100  0x080C        SUB  (1) $A4, 1, $A4    ; re plicated SUB 

16.0200  0x0810        SRL  (1) $A4, $A7, $A8  ; re plicated SRL 

16.0300  0x0810        GOTO (0) L2             ; ad ded ‘branch-over’ 

17.0000  0x080C  L1:   SUB  (1) $A4, 1, $A4  

17.0100  0x0810        SRL  (1) $A4, $A7, $A8  

18.0000  0x0814  L2:   ... 

Fig. 6. MST representation with instruction replication 

4.2 Event-Triggered Operations 

In the previous section, a methodology for generating a CFG from pipelined assembly 
code was presented. The CFG represents the flow of control in the program via edges 
connecting basic blocks in the graph. However, the CFG does not inherently contain 
any information regarding propagation delay. In translating pipelined or scheduled 
assembly code from one architecture to another, it is essential that the compiler 



capture the propagation delay and data dependencies correctly. Failure to do so may 
result in false data dependencies, incorrect data value propagation, and possibly an ill-
terminated or non-terminating program. Referring back to the vectorsum procedure in 
Figure 1, we find that the main loop body will execute an unknown number of times 
until the predicate condition on the branch instruction is false, namely, when A1 = 0.  
At that point, the loop will continue to iterate for 5 more cycles until the branches 
within the pipeline have completed. During this time, data is still computed and 
propagated through the loop. Should the compiler not consider the propagation delay 
on the branch instructions, the loop may terminate early, producing erroneous data. 
Similarly, failure to consider the propagation delay in the pipelined load instructions 
will also result in erroneous data. 

As a solution, we introduce the concept of an event-triggered operation, composed 
of a trigger and an execute stage. An event trigger is analogous to the read stage in a 
pipelined architecture, where the instruction is fetched and register values are read; an 
event execute is analogous to the write-back stage in the pipeline, during which the 
values are written to the destination register or memory. The event triggering and 
execution stages are offset by the delay of the operation. 

An operation event is encapsulated in the MST language using a virtual shift 
register with a precision d, corresponding to the number of delay cycles for the 
operation. Virtual registers are temporary operands created by the compiler that do not 
exist within the framework of the source architecture’s physical registers. In practice, 
this results in the addition of a very small shift register since most ISAs generally 
have no more than 4-6 delay slots in any given multi-cycle instruction. When a 
pipelined instruction is encountered during the normal flow of the program, an event 
is triggered by assigning a ‘1’ to the highest bit (d-1) in the shift register. In each 
successive cycle, a shift-right logical operation is performed on the register. The event 
is executed after d cycles, when a ‘1’ appears in the zero bit of the shift register.   
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Fig. 7. Event-triggering for a pipelined branch operation in a loop body 

 
Figure 7 illustrates the event triggering for the branch operation in the loop body of 

the vectorsum procedure, which has an operation delay of 6 cycles. In the first 
iteration of the loop, an event is triggered when the branch instruction is encountered 



by setting the high bit of shift register. In each subsequent cycle, the register is shifted 
right while a new event is triggered. After six iterations, event 1 is executed and the 
branch to LOOP is taken. This is followed by subsequent event executions through 
the tenth iteration of the loop, until the pipeline in the shift register has been cleared.  

The technique described here is utilized in the linearization process for pipelined 
operations as discussed in the following sections. 

4.3 Linearizing Pipelined Operations 

This section describes the linearization process for pipelined operations. The concept 
of this process is to serialize the pipelined assembly instructions into linear assembly, 
such that the each pipelined instruction has a well-defined data flow path. The process 
for linearizing computational operations (arithmetic, logical, memory, etc.) and 
branch operations are described independently, as they function differently in pipeline 
architectures. The linearization process assumes that the CFG is complete, i.e., no 
edges will be inserted between blocks in the future. Consequently, if new edges are 
added in the future, data propagation and data dependencies are not guaranteed to be 
correct. To ensure its completeness, we force the algorithm to cover all possible 
control paths when generating the CFG. This is accomplished in a preprocessing pass 
that ensures all branch instructions in the program are predicated. A constant predicate 
of ‘1’, whose condition always resolves to true, is added to all non-predicated branch 
instructions. This forces the branch to be treated as a conditional, and allows the 
control flow to propagate to the fall-through block. Subsequent optimizations, such as 
dead-code elimination [13], will remove any resulting extraneous operations.  

4.3.1 Linearizing Computational Operations 
 
In the linearization process for computational operations, multi-cycle instructions are 
serialized into a well-defined data flow path along the pipeline. In order to accomplish 
this task, virtual registers are introduced to break multi-cycle instructions into a 
sequence of multiple single-cycle instructions. Each instruction in the sequence is 
guarded by a predicate on an event-triggering register, as described above. Should the 
program encounter the instruction through a path outside the normal pipeline data 
flow path, the predicate will prevent the operation from executing. 

The linearization process works as follows: For an instruction with n delay slots, 
the original instruction is modified to write to a temporary virtual register Rn, and the 
delay of the instruction is changed to a single cycle. In each of the subsequent n-1 
cycles, the value is propagated through virtual registers along the pipelined data flow 
path by assigning Rn-1�Rn, Rn-2�Rn-1, …, R0�R1 in sequence, where R0 is the 
original register name. Each of these instructions is predicated on its respective cycle 
bit of the shift register: P[n-1] through P[0]. If the end of a basic block is reached, the 
linearization is propagated to the successor blocks. This approach assumes that no two 
instructions are scheduled such that both have the same destination register and write-
back stages in the same cycle. This is a fair assumption, since compilers generally do 
not produce code resulting in race conditions. If two or more identical instructions 
have intersecting pipeline paths, redundant instructions may be avoided by tracking 



the timesteps to which they have been written. We rely on optimizations, such as copy 
and constant propagation [13], to remove any extraneous operations. 

 
           :                : 

12.000  0x000C            MOVE(0) 1, $P1[4]    ; LD  event cycle 1 

12.001  0x000C            SRL(1) $P1, 1, $P1 

12.002  0x000C  [$P1[4]]  LD(1) *mem($A4), $A6_4 

           :                : 

13.000  0x000C            SRL(1) $P1, 1, $P1   ; LD  event cycle 2 

13.001  0x000C  [$P1[3]]  MOVE(1) $A6_4, $A6_3 

           :                : 

14.000  0x000C            SRL(1) $P1, 1, $P1   ; LD  event cycle 3 

14.001  0x000C  [$P1[2]]  MOVE(1) $A6_3, $A6_2 

           :                : 

15.000  0x000C            SRL(1) $P1, 1, $P1   ; LD  event cycle 4 

15.001  0x000C  [$P1[1]]  MOVE(1) $A6_2, $A6_1 

           :                : 

16.000  0x000C  LOOP:     SRL(1) $P1, 1, $P1  ; LD event cycle 5 

16.001  0x0014            OR(0) $P1[0], $P2[0], $MP 0 

16.002  0x001C            OR(0) $MP0, $P3[0], $MP1 

16.003  0x0024            OR(0) $MP1, $P4[0], $MP2 

16.004  0x0034            OR(0) $MP2, $P5[0], $MP3 

16.005  0x000C  [$MP3]    MOVE(1) $A6_1, $A6  ; int ersecting LDs 1-5 

           :                : 

Fig. 8. Linearization of pipelined load (LD) instruction in the vectorsum procedure 

 

Figure 8 illustrates the linearization process in the MST for the first pipelined LD 
instruction in the vectorsum example of Figure 1. In timestep 12, an event is triggered 
for the LD instruction by posting a ‘1’ to the high bit in the virtual shift register P1. 
Additionally, the LD instruction is modified to write to virtual register A6_4, and the 
operation delay is changed from 5 cycles to 1 cycle. In the subsequent cycles, A6_4 is 
written to A6_3, A6_3 is written to A6_2, and A6_2 is written to A6_1, at which point 
the linearization is propagated to the LOOP block. A6_1 is finally written to the 
physical register A6 in timestep 16. Each of these move instructions is guarded by a 
predicate on a P1 bit, which is right-shifted in each cycle along the same control path. 
The same methodology is applied to each LD instruction in program. Although the 
propagation instructions may read and write to the same register in parallel, the one-
cycle delay on each instruction enforces the correct data dependencies. 

It is interesting to note that the pipelined LD instructions have intersecting paths. 
As an example, all five LD instructions will have their 5th cycles intersect in the same 
timestep (16), where A6 � A6_1. To avoid extraneous instructions, the propagation 
instructions are merged by OR-ing their predicates, as shown in the figure.  



4.3.2 Linearizing Branch Operations 

Unlike computational instructions, branch instructions do not propagate data. Rather, 
they trigger a change in control flow after a certain number of delay cycles. In 
linearizing branch operations, only the event is propagated through the CFG, as 
described above. At each branch execution point in the CFG, which can only be the 
end of a basic block, a copy of the branch instruction is inserted. The branch 
instruction is predicated on the event shift-register. Similar to the process above, if 
two or more of the same branch instruction have intersecting paths, redundant 
instructions may be eliminated by tracking the timesteps to which the instructions 
have been written. Two or more of the same branch instruction that execute at the 
same point can be merged by OR-ing their predicates. The original branch instructions 
are replaced with NOP instructions in order to maintain the correct instruction flow. 
Figure 10 illustrates the linearization process for pipelined branch operations.   

 
           :            : 

11.000  0x0008         MOVE(0) 1, $P1[5]    ; branc h event cycle 1  

11.001  0x0008         SRL(1)  $P1, 1, $P1 

11.002  0x0008         NOP(1)  1            ; branc h replaced with NOP 

           :            : 

12.000  0x0008         SRL(1) $P1, 1, $P1   ; branc h event cycle 2 

           :            : 

13.000  0x0008         SRL(1) $P1, 1, $P1   ; branc h event cycle 3 

           :            : 

14.000  0x0008         SRL(1) $P1, 1, $P1   ; branc h event cycle 4 

           :            : 

15.000  0x0008         SRL(1) $P1, 1, $P1   ; branc h event cycle 5 

           :            : 

16.000  0x0008  LOOP:  SRL(1) $P1, 1, $P1   ; branc h event cycle 6 

16.008  0x0008         OR(0) $P1[0], $P2[0], $MP0 

16.009  0x0010         OR(0) $MP0, $P3[0], $MP1 

16.010  0x0018         OR(0) $MP1, $P4[0], $MP2 

16.011  0x0020         OR(0) $MP2, $P5[0], $MP3 

16.012  0x0028         OR(0) $MP3, $P6[0], $MP4 

16.013  0x003C  [$MP4] GOTO(0)  LOOP   ; intersecti on branches 1-6 

           :            : 

Fig. 9. Linearization of a pipelined branch instruction in the vectorsum procedure 

4.3.3 The Linearization Algorithm 

Figure 9 presents our algorithm for linearizing pipelined operations. The procedure 
has the same general organization as the algorithm presented by Cooper et al. [6] for 
generating CFGs. The algorithm initially creates a worklist of instruction counters for 
each basic block in the CFG in lines 1-3, and then iterates through the worklist in lines 
4-25. An instruction counter is particular to a block, and holds a list of pending 



instructions and a counter representing the remaining clock cycles before each 
instruction is executed. To prevent redundant iterations over blocks, in lines 8-9, the 
algorithm checks that the block has not seen any of the pending instruction counters 
before continuing. The algorithm then iterates over the block by whole timesteps in 
lines 10-20. The instructions in each timestep are iterated through in lines 11-17, as 
the algorithm searches in line 12 for previously unvisited pipelined instructions to add 
to the instruction counter. Lines 13-15 add a counter for the branch instructions with 
cycle delays greater than zero; the original branch instruction is replaced with a NOP 
instruction to maintain the correct program flow. Lines 16-17 add counters for all 
multi-cycle instructions whose write-back time falls outside the block. Unique event 
instructions are inserted for each pending instruction in lines 18-20, as described 
above; those that have completed are removed from the instruction counter list. After 
iterating over the instructions within each timestep, the pending instruction counters 
are decremented in line 21. At the conclusion of the iteration over timesteps in the 
block, lines 22-26 propagate all pending counters to new instruction counters for each 
successor block edge; the new instruction counters are added to the worklist. The 
algorithm terminates once no new instruction counters are encountered by any block 
and the worklist is empty. The algorithm runs in O(n) time, where n is the number of 
instructions in the program, assuming a small, constant number of outgoing edges 
between blocks. 
 
   

 
  Linearize_Pipelined_Operations( CFG ) 
 1  worklist = empty list of InstrCounters 
 2  for each basic block in CFG do 
 3    add InstrCounter(block) to worklist 
 4  while worklist->size() > 0 do 
 5    instr_counter = worklist->front() 
 6    remove instr_counter from worklist 
 7    block = instr_counter->block 
 8    if block has seen all live counters in instr_ counter then 
 9      continue 
10    for each whole timestep ts in block do 
11      for each instruction i in timestep ts do 
12        if i has not been seen by instr_counter t hen 
13          if i is a branch instruction and i->del ay > 0 then 
14            add {i:i->delay} to instr_counter 
15            replace branch instruction i with NOP  instruction 
16          else if (i->timestep + i->delay) > bloc k->max_time 
17            add {i:i->delay} to instr_counter 
18        for each counter c in instr_counter do 
19          insert a unique event instruction for c in timestep ts 
20          if c = 0 then remove c from instr_count er 
21      instr_counter->DecrementCounters() 
22    if instr_counter has live counters  
23      for each successor s of block do 
24        target_instr_counter = InstrCounter(s) 
25        add unique live counters to target_instr_counter 
26        add target_instr_counter to worklist 
 

Fig. 10. Linearization algorithm for pipelined operations 

 



4.4 Generating the Control and Data Flow Graph 

In the previous sections we described how to build a CFG and break data 
dependencies in pipelined and scheduled assembly code. In this section we combine 
the two techniques to generate the complete CDFG. The procedure is described in 
Figure 12, which takes a list of assembly instructions as input and returns a CDFG. 
The procedure begins with a preprocessing step to ensure that all branch instructions 
in the program are predicated as described in the previous section. The algorithm 
constructs the CFG using Cooper’s algorithm, and then linearizes the pipelined 
operations as described above. The data flow graph is then generated from the newly 
serialized instructions, based on the data dependency analysis technique described in 
Section 3. The procedure concludes by implementing single static-variable 
assignment (SSA) [13], which is a method of breaking data dependencies by ensuring 
that every assignment in the CDFG has a unique variable name.  

Traditionally, a 
Φ

-function is used in SSA to join multiple assignments to a 
variable, stemming from different paths in the CFG. The number of arguments to the Φ

-function is equal to the number of definitions of the variable from each point in the 
CFG. This method often causes a significant bottleneck when handling numerous data 
paths. Interestingly, once the pipelined operations in the CDFG have been linearized, 
the 

Φ
-function becomes superfluous, as only the latest definition of a variable will 

reach the end of the block and propagate through the control flow. Those instructions 
with multi-cycle delays that originally crossed basic block boundaries have since been 
serialized into multiple single-cycle instructions. As a result, the latest definition of 
each SSA variable may be assigned back to its original variable name at the end of the 
block, thus eliminating the need for the 

Φ
-function. Optimizations, such as copy 

propagation and dead-code elimination [13], will remove extraneous assignment 
operations created by this process. 
 
 

 
  Generate_CDFG( instr_list ) 
1  Predicate_Pipelined_Instrs( CFG ) 
2  CFG = Generate_Ctrl_Flow_Graph( instr_list ) 
3  Linearize_Pipelined_Operations( CFG ) 
4  CDFG = Generate_Data_Flow_Graph( CFG ) 
5  Generate_SSA( CDFG ) 
6  return CDFG 
 

Fig. 11. Procedure for generating a CDFG 

5 Experimental Results 

The correctness of the methodology presented in this paper was verified using the 
FREEDOM compiler [11,19] on 8 highly pipelined benchmarks in the Texas 
Instruments C6000 DSP assembly language. The FREEDOM compiler generated 
CDFGs and RTL code targeting the Xilinx Virtex II FPGA. Each benchmark was 
simulated using Mentor Graphic’s ModelSim to verify bit-true accuracy and obtain 
cycle counts.  



There has been little work reported on translating highly pipelined software 
binaries to RTL code for FPGAs. This makes comparison with other approaches 
difficult. However, it is interesting to consider the impact and effectiveness of this 
algorithm in a high-level synthesis tool. Table 1 shows comparisons in cycle counts 
for the TI C6000 DSP and the Virtex II FPGA, generated by the FREEDOM 
compiler. Also shown is the number of pipelined operations in each benchmark and 
the number of instructions inserted during the linearization process to demonstrate the 
impact on code size when using this approach. 

Results indicate the FREEDOM compiler successfully generated the correct 
CDFGs from the pipelined assembly code, allowing complex optimizations and 
scheduling to significantly reduce clock cycles in the FPGA design. On average, 
approximately 9 instructions were added for each pipelined operation and there was a 
27% increase in code size during the linearization process. Please note that these 
values reflect the size of the design before CDFG optimizations, which will further 
reduce implementation complexity. A detailed evaluation of the performance and 
optimizations of the FREEDOM compiler has been presented in other work [11,19]. 

Table 1. Experimental results on pipelined benchmarks using the FREEDOM compiler 

 
Benchmark 

 
DSP Cycles 

 
FPGA Cycles 

# Pipelined  
Instructions 

# Added 
Instructions 

memmove 125747 2516 33 352   (24.7%) 

memcpy 69615 2004 14 136   (52.3%) 

divi 282301 16127 17 141   (27.3%) 

mpyd 1329176 39669 26 269   (14.0%) 
remi 260148 16888 13 130   (34.6%) 

dsp_fir_gen 30851 685 49 683   (43.1%) 

lms_filter 33537580 773288 147 967   (13.7%) 

noise_canceller_fir 8239397 163778 21 105   (  5.3%) 

6 Conclusions 

This paper presents a methodology for correctly representing the data dependencies 
and data propagation when generating CDFGs from highly pipelined and scheduled 
assembly code. This process consists of three stages: generating a control flow graph, 
linearizing the assembly code, and generating the data flow graph. We use a known 
method for generating the control flow graph from scheduled assembly code and 
describe further techniques for handling more complex architectures that employ 
parallel instruction sets and dynamic branching. We present a linearization process, in 
which pipelined structures are serialized into linear assembly. This allows for proper 
data dependency analysis when generating the data flow graph.   

The work was verified in the FREEDOM compiler on 8 highly pipelined software 
binaries for the TI C6000 DSP, targeting the Xilinx Virtex II FPGA. Results indicate 
that data dependencies were correctly identified, enabling the compiler to perform 
complex optimizations and scheduling to reduce clock cycles in the designs.  
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