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Abstract. High-level synthesis tools generally convert audtr designs
described in a high-level language into a contral data flow graph (CDFG),
which is then optimized and mapped to hardware. Hewehere has been little
work on generating CDFGs from highly pipelined e@fte binaries, which
complicate the problem of determining data flow pargation and
dependencies. This paper presents a methodologyefterating CDFGs from
highly pipelined and scheduled assembly code thaectly represents the data
dependencies and propagation of data through thgrgam control flow. This
process consists of three stages: generating eotfiotv graph, linearizing the
assembly code, and generating the data flow grEipd proposed methodology
was implemented in the FREEDOM compiler and teste@® highly pipelined
software binaries. Results indicate that data ddgeries were correctly
identified in the designs, allowing the compiler fgerform complex
optimizations to reduce clock cycles.

1 Introduction

Traditionally, the high-level synthesis problemadse of transforming an abstract,
timing-independent specification of an applicatioto a detailed hardware design.
High-level synthesis tools generally convert thetedet design into a control and data
flow graph (CDFG) that is composed of nodes représg inputs, outputs, and
operations. The CDFG is a fundamental componemhasgt compilers, where most
optimizations and design decisions are performedmprove frequency, power,
timing, and area. Building a CDFG consists of a-8tep process: building the control
flow graph (CFG), which represents the path of @nh the design, and building the
data flow graph (DFG), which represents the datpeddencies in the design.
However, when high-level language constructs ateealily available, such as in the
case where legacy code for an application on agr @tbcessor is to be migrated to a
new processor architecture, a more interesting lpnolpresents itself, known as
binary translation. Much research has been performed on CDFG geoer&im
software binaries and assembly code. However, thasebeen very little work on
generating complete CDFGs from scheduled or pipdlisoftware binaries. Data



dependency analysis of such binaries is more cigilg than that of sequential
binaries or high-level language applications.

When translating assembly codes from digital sigpalcessors (DSPs), it is
common to encounter highly pipelined software bgsmithat have been optimized
manually or by a compiler. Consider the Texas tmsgnt C6000 DSP assembly code
for the vectorsum function in Figure 1. In this architecture, bramagerations contain
5 delay slots and loads contain 4 delay slots. | Thgmbol indicates the instruction is
executed in parallel with the previous instructind the[ ] symbol indicates the
operation is predicated on an operand. Clearly, wbetorsum code is highly
pipelined; each branch instruction is executeddnsecutive iterations of the loop.
Moreover, the dependencies of the ADD instructiorttie loop body change with
each iteration of the loop: A6 is dependent onltzal at instruction 0x0004 in the
first iteration of the loop, A6 is dependent on thad at instruction 0x000C in the
second iteration of the loop, etc. Generating a GDB represent this pipelined
structure is very challenging. In doing so, one tmecsnsider the varying data
dependencies and also ensure that each branchedésited at its proper time and
place. Branch instructions that fall within the aleklots of other branch instructions
complicate the structure of the control flow grapbr instance, when the predicate
condition, A1, on the branch instruction in thepdaody isfalse, the previous branch
instructions that were encountered during the eb@tusequence will continue to
propagate and execute. This may occur within tlop,l@r possibly after exiting the
loop. More complex software pipelines may contaianich instructions with various
targets, producing multiple exit points in a CDFGcx.

0x0000 VECTORSUM: ZERO A7

0x0004 LDW *A4d++, A6 ; 4 delay slo ts
0x0008 || B LOOP ; 5 delay slo ts
0x000C LDW *Ad++, A6

0x0010 || B LOOP

0x0014 LDW *Ad++, A6

0x0018 || B LOOP

0x001C LDW *Ad++, A6

0x0020 || B LOOP

0x0024 LDW *Ad++, A6

0x0028 || B LOOP

0x002C || SUB Al1,4,A1

0x0030 LOOP: ADD A6, A7, A7

0x0034 || [A1]LDW *Ad++, A6

0x0038 || [A1]SUB A1,1,Al

0x003C || [Al]B LOOP ; branches ex ecutes here
0x0040 STW A7,*A5

0x0044 NOP 4

Fig. 1. TI C6000 assembly code for a pipelingdtorsum procedure



In this paper, we present a methodology for gemgy@@ DFGs from scheduled and
pipelined assembly code. This process consisthreetstages: generating a control
flow graph, linearizing the assembly code, and gativeg the data flow graph. We use
the methods described by Cooper et al. [6] for gy a CFG from scheduled
assembly code. In addition, we extend their work sigpport more complex
architectures that employ parallel instruction smtgl dynamic branching. We also
present a linearization process, in which pipelisgdctures are serialized into linear
assembly. This allows for proper data dependen@ysis when constructing data
flow graphs. This methodology was incorporatedhea FREEDOM compiler, which
translates DSP assembly code into hardware deistisptor FPGAs. The techniques
described in this paper were briefly discussed revipus work [11,19]; here we
present a more refined and elegant approach itegrdetail.

The remainder of this paper is structured as fdlto@ection 2 discusses related
work in the area of CDFG generation from assemlaoigec Section 3 provides an
overview of the FREEDOM compiler infrastructure aitgl intermediate language
architecture. Section 4 describes our method oémggimg a CDFG from scheduled
and pipelined assembly code in detail. Finally,t®as 5 and 6 present experimental
results and conclusions, respectively.

2 Related Work

There has been a great deal of fundamental reseatistudy of binary translation
and decompilation. Cifuentes et al. [3,4,5] destimethods for converting assembly
or binary code from one processor’s instructionagehitecture (ISA) to another, as
well as decompilation of software binaries to highel languages. Kruegel et al. [9]
described a technique for decompilation of obfusdabinaries. Stitt and Vahid
[16,17] reported work on hardware-software pantitigy of software binaries. Levine
and Schmidt [10] proposed a hybrid architecturéedaHASTE, in which instructions
from an embedded processor are dynamically compdatb a reconfigurable
computational fabric using a hardware compilatioit.uYe et al. [18] developed a
similar compiler system for the CHIMAERA architergu

Control and data flow analysis is essential to tyirieanslation. Cifuentes et al. [5]
described methods of control and data flow analysisanslating assembly to a high-
level language. Kastner and Wilhelm [8] reportedrikvon generating CFGs from
assembly code. Decker and Kastner [7] describecthod of reconstructing a CFG
from predicated assembly code. Amme et al. [1]qresd work on a memory aliasing
technique, in which data dependency analysis ispco@d on memory operations
using a value-based analysis and modified verditheoGCD test [2].

There has been very little work on generating CDFRf@sn highly pipelined
software binaries in which branch instructions appe the delay slots of other
branch instructions. The most comprehensive worbkuilding CFGs from pipelined
assembly code was reported by Cooper et al. [6vever, their method does not
consider the complexities of modern processor tchires that utilize instruction-
level parallelism and dynamic branching techniqueshis paper, we address these



issues and present methods to handle CDFG geneffatim software binaries that
feature these sophisticated scheduling techniques.

3 Overview of the FREEDOM Compiler

This section provides a brief overview of the FREEND compiler infrastructure,
as shown in Figure 2. The compiler was designedate a common entry point for
all assembly languages. Towards this effort, tlomtiend uses a description of the
source processor’s ISA in order to configure theeatbly language parser. The ISA
specifications are written in SLED from the New s#sr Machine-Code toolkit
[14,15]. The parser generates a virtual assemlgyesentation called the Machine
Language Syntax Tree (MST), which has a syntaxiairto the MIPS ISA. The MST
is generic enough to encapsulate most ISAs, inefuthose that support predicated
and parallel instruction sets. All MST instructiomse three-operand, predicated
instructions in the formafpred] op srcl src2 dst. A CDFG is generated from the
MST, where optimizations, scheduling, and resousoeling are preformed. The
CDEFG is then translated into a high-level HardwRescription Language (HDL) that
models processes, concurrency, and finite statehimes. Additional optimizations
and customizations are performed on the HDL for theget architecture. This
information is acquired via the Architecture Deptidn Language (ADL) files. The
HDL is translated directly to RTL VHDL and Verildg be mapped onto FPGAs, and
a testbench is generated to verify that the ougpcrrect.

DSP Assembly DSP DSP
Language Semantic: Assembly Code Binary Code

Optimizations, Linearization|
and Procedure Extraction
Optimizations,

Loop Unrolling, Scheduling, CDFG -
and Resource Binding Architecture

Description
Optimizations, Language
Customizations HDL
‘ RTL VHDL ‘ ‘ RTL Verilog ‘ ‘ Testbench ‘

Fig. 2. Overview of the FREEDOM compiler infrastructure

The fixed number of physical registers on a promescessitates advanced
register reuse algorithms in compilers. These dpétions often introduce false
dependencies based on register names, resultidifficulties when determining data
dependencies for scheduled or pipelined binariab @arallel instruction sets. To
resolve these discrepancies, each MST instructi@ssigned a timestep, specifying a



linear instruction order, and an operatighay, equivalent to the number of execution
cycles. Each cycle begins with an integer-basedstep, T. Each instructiom in a
parallel instruction set is assigned the timestgp= T + (0.01 * n). Assembly
instructions may be translated into more than ois Mhstruction. Each instruction

in an expanded instruction set is assigned thestepd,,, = T, + (0.0001 * m). The
write-back time for the instruction, or the cyctewhich the result is valid, is defined
aswb = timestep + delay. If an operation delay is zero, the resulting dataalid
instantaneously. However, an operation with del@atpr than zero has its write-back
time rounded down to the nearest whole numbefipor(timestep), resulting in valid
data at théveginning of the write-back cycle.

Figure 3 illustrates how the instruction timesteml alelay are used to determine
data dependencies in the MST. In the first instomctthe MULT operation has one
delay slot, and the resulting value in registerigot valid until the beginning of
cycle 3. In cycle 2, the result of the LD instroctiis not valid until the beginning of
cycle 7, and the result of the ADD instruction ¢ malid until the beginning of cycle
3. Consequently, the ADD instruction in cycle 3ependant upon the result of the
MULT operation in cycle 1 and the result of the ADPeration in cycle 2. Likewise,
the first three instructions are dependant uporséme source register, A4.

TIMESTEP  PC OP  DELAY SRCI SRC2 DST
1.0000 0X0020 MULT (2) $A4, 2, $A4

2.0000 0X0024 LD (5) *($A4),  $A2

2.0100 0X0028 ADD (1) $A4, 4, $A2

3.0000 0X002c ADD (1) $A4, $A2, $A3

Fig. 3. MST instructions containing timesteps and delaysietermining data dependencies

4  Building a Control and Data Flow Graph

This section presents our methodology for genegadirCDFG from scheduled and
pipelined assembly code. This process consisthreetstages: generating a control
flow graph, linearizing the assembly code, and getireg a data flow graph.

4.1 Generating a Control Flow Graph

Cooper et al. [6] presented a three-step procesbuitding a CFG from scheduled
assembly code, which was used as the first stageeiproposed work. The first step
of their algorithm partitions the code at labelstfg points) into a set of basic blocks.
During this process, they assume all entry poirgscamplete, and no branch targets
an instruction without a label. The second steagites between basic blocks in the
CFG to represent the normal flow of control. Hehey only consider non-pipelined
branch instructions, or those that do not appethinvihe delay slots of other branch
instructions. Pipelined branches are handled in tthied step using an iterative
algorithm that simulates the flow of control foretiprogram by propagating branch
and counter information from block to block. Theiethod is shown to terminate in



linear time for CFGs containing only branches wekplicit targets. Figure 4
illustrates the CFG generated for theetorsum procedure in Figure 1.

b

0x0000 VECTORSUM: ZERO A7
0x0004 LDW *Ad++, A6
0x0008 || B LOOP
0x000C LDW *Ad++, A6
0x0010 || B LOOP
0x0014 LDW *Ad++, A6
0x0018 | B LOOP
0X001C LDW *Ad++, A6
0x0020 || B LOOP
0x0024 LDW *Ad4++, A6
0x0028 || B LOOP
0x002C || SUB AL 4, AL
P
¢
0x0030LOOP:  ADD A6, A7, A7
0x0034 || [AL]LDW *Ad++ A6
0x0038  ||[AL]SUB AL 1,Al
0x003C  [|[AL]B LOOP
¢ »
[ 0x0040 STW A7,*A5 ]
i >
[ 0x0044 NOP 1 ]
'* >
[ ox0044 NOP 1 ]
# >
0x0044 NOP 1 ‘
¢ >
[ 0x0044 NOP 1 ]
I

Fig. 4. Control flow graph fowectorsum

In practice, the assumptions made in their workepssme difficulties in
generating CFGs for some modern processor architectFor instance, they assume
all labels and branch targets are well defined. el@w, some disassemblers limit the
labels to a procedure level only and refrain frameluding them locally within
procedure bounds. In some architectures, registagsbe used in branch targets, as in
the case of a long jump where a static PC valleaided into the register prior to the
branch instruction. To handle these situationsintreduce a pre-processing step that
determines all static branch targets and addsetbigective labels to the instructions.
Some architectures may also support dynamic breargets, in which the destination
value may be passed to a register as a functiomnper, such as with procedure
prologues and epilogues. In these situations, We &n optimistic approach by
assuming the dynamic branch operation is a proeeckit. The branch is temporarily
treated as a NOP instruction when building theahi€FG to allow the control flow
to propagate through. We rely on post-processiegsstsuch as alias analysis and
procedure extraction to determine the possibleirdgsins [12]. The CFG is then
regenerated with the newly identified destinatiaiues.



Many of today’'s processor architectures utilizetringtion-level parallelism to
achieve higher performances, which complicates rgetiom of CFGs. For instance, a
branch destination may have a target within a pErsét of instructions. This would
break up the control flow at intermediate pointshimi a basic block, creating
erroneous data dependencies. In Figure 5, the ARIB, and SRL instructions are
scheduled in parallel. However, if the predicateghbh is taken, the ADD instruction
is not executed. Consequently, the entry labelhenSUB instruction partitions the
control flow in the middle of the parallel set, glag the latter two instructions in a
separate basic block. This forces the A7 operanthenSRL instruction to use the
resulting value from the ADD instruction in the pi@us block. To account for such
discrepancies, we introduce a procedure that chieckentry points (labels) within a
parallel set of instructions. If such an entry parists, the instructions falling below
the entry point are replicated and added to theptwpion of the parallel set. Figure 6
shows the MST code after instruction replicatiohe BUB and SRL instructions have
been replicated and a branch operation has beesdaddjump over the replicated
code segment. We rely on subsequent optimizationtheé CDFG, such as code-
hoisting [13], to eliminate superfluous operations.

0x0800  [A1]B L1

0x0804 NOP 5

0x0808 ADD A4, A7, A7
0x080C L1:|| SUB A4,1, A4
0x0810 || SRL A4, A7, A8
0x0814 L2:

Fig. 5. Branch target inside a parallel instruction set

10.0000 0x0800 [A1] GOTO (6) L1
11.0000 0x0804  NOP (5)5
16.0000 0x0808  ADD (1) $A4, $A7, $A7

16.0100 0x080C SUB (1) $A4, 1, $A4 ;re plicated SUB
16.0200 0x0810 SRL (1) $A4, $A7, $A8 ;re plicated SRL
16.0300 0x0810 GOTO (0) L2 ;ad ded ‘branch-over’

17.0000 0x080C L1: SUB (1) $A4,1, $A4
17.0100 0x0810 SRL (1) $A4, $A7, $A8
18.0000 0x0814 L2: ...

Fig. 6. MST representation with instruction replication

4.2 Event-Triggered Operations

In the previous section, a methodology for genegaéi CFG from pipelined assembly
code was presented. The CFG represents the flmendfol in the program via edges
connecting basic blocks in the graph. However,Gk& does not inherently contain
any information regarding propagation delay. Imstating pipelined or scheduled
assembly code from one architecture to anotheis issential that the compiler



capture the propagation delay and data dependecaiesctly. Failure to do so may
result in false data dependencies, incorrect datzevpropagation, and possibly an ill-
terminated or non-terminating program. Referringkb thevectorsum procedure in
Figure 1, we find that the main loop body will eweean unknown number of times
until the predicate condition on the branch inginrcis false, namely, wherAl = 0.

At that point, the loop will continue to iteraterf6 more cycles until the branches
within the pipeline have completed. During this ¢indata is still computed and
propagated through the loop. Should the compilércoasider the propagation delay
on the branch instructions, the loop may termiregtdy, producing erroneous data.
Similarly, failure to consider the propagation geia the pipelined load instructions
will also result in erroneous data.

As a solution, we introduce the concept ofesent-triggered operation, composed
of atrigger and arexecute stage. An evertrigger is analogous to the read stage in a
pipelined architecture, where the instruction islied and register values are read; an
eventexecute is analogous to the write-back stage in the pigelduring which the
values are written to the destination register @mory. The event triggering and
execution stages are offset by the delay of theatios.

An operation event is encapsulated in the MST lagguusing a virtual shift
register with a precisiom, corresponding to the number of delay cycles f@ t
operation. Virtual registers are temporary operamdated by the compiler that do not
exist within the framework of the source architeets physical registers. In practice,
this results in the addition of a very small shigister since most ISAs generally
have no more than 4-6 delay slots in any given iryttle instruction. When a
pipelined instruction is encountered during thenmarflow of the program, an event
is triggered by assigning a ‘1’ to the highest (oitl) in the shift register. In each
successive cycle, a shift-right logical operatiopérformed on the register. The event
is executed aftedt cycles, when a ‘1’ appears in the zero bit ofghit register.

Bit5

SRL — Bit0
Iteration 1| 1 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 |EventlTriggered

Iteration 2| 1 ‘ 1 ‘ 0 ‘ 0 ‘ 0 ‘ 0 |EventZTriggered

Iteration 3| 1 ‘ 1 ‘ 1 ‘ 0 ‘ 0 ‘ 0 |Even13 Triggered

lteration 4| 1 ‘ 1 ‘ 1 ‘ 1 ‘ 0 ‘ 0 |Event4Triggered

Iteration 5| 1 ‘ 1 ‘ 1 ‘ 1 ‘ 1 ‘ 0 |Event5Triggered

Iteration 6| 0 ‘ 1 ‘ 1 ‘ 1 ‘ 1 ‘ 1 |EvemlExecuted

Iteration 7| 0 ‘ 0 ‘ 111 ‘ 1 ‘ 1 |Event2Executed

lteration 10| 0 ‘ 0 ‘ 0|0 ‘ 0 ‘ 1 |Even15Execu1ed

Fig. 7. Event-triggering for a pipelined branch operaiioa loop body

Figure 7 illustrates the event triggering for tharkch operation in the loop body of
the vectorsum procedure, which has an operation delay of 6 sycle the first
iteration of the loop, an event is triggered whiea branch instruction is encountered



by setting the high bit of shift register. In ealbsequent cycle, the register is shifted
right while a new event is triggered. After sixréBons, event 1 is executed and the
branch to LOOP is taken. This is followed by sulhsst event executions through
the tenth iteration of the loop, until the pipelinghe shift register has been cleared.

The technique described here is utilized in thednization process for pipelined
operations as discussed in the following sections.

4.3 Linearizing Pipelined Operations

This section describes the linearization procesgijeelined operations. The concept
of this process is to serialize the pipelined agdgrimstructions into linear assembly,
such that the each pipelined instruction has a-defihed data flow path. The process
for linearizing computational operations (arithmetlogical, memory, etc.) and
branch operations are described independentiyegsftinction differently in pipeline
architectures. The linearization process assumasthie CFG is complete, i.e., no
edges will be inserted between blocks in the fut@ensequently, if new edges are
added in the future, data propagation and datandigpeies are not guaranteed to be
correct. To ensure its completeness, we force therithm to cover all possible
control paths when generating the CFG. This is mqdished in a preprocessing pass
that ensures all branch instructions in the progasenpredicated. A constant predicate
of ‘1’, whose condition always resolvesttae, is added to all non-predicated branch
instructions. This forces the branch to be treaeda conditional, and allows the
control flow to propagate to the fall-through bloS8ubsequent optimizations, such as
dead-code elimination [13], will remove any resudtextraneous operations.

4.3.1 Linearizing Computational Operations

In the linearization process for computational agiens, multi-cycle instructions are
serialized into a well-defined data flow path aldhg pipeline. In order to accomplish
this task, virtual registers are introduced to hkreaulti-cycle instructions into a
sequence of multiplsingle-cycle instructions. Each instruction in the sequence is
guarded by a predicate on an event-triggering tegias described above. Should the
program encounter the instruction through a pattsioe the normal pipeline data
flow path, the predicate will prevent the operatitom executing.

The linearization process works as follows: Forirgtruction withn delay slots,
the original instruction is modified to write tat@mporary virtual registeR,, and the
delay of the instruction is changed to a singleleym each of the subsequemnt.
cycles, the value is propagated through virtuaistegs along the pipelined data flow
path by assignindgr,.1€R, R.2€R.1, ..., RRERy in sequence, wher&, is the
original register name. Each of these instructisngredicated on its respective cycle
bit of the shift registe[n-1] throughP[(]. If the end of a basic block is reached, the
linearization is propagated to the successor blothis approach assumes that no two
instructions are scheduled such that both haveahee destination register and write-
back stages in the same cycle. This is a fair aggam since compilers generally do
not produce code resulting in race conditionswié tor more identical instructions
have intersecting pipeline paths, redundant insbms may be avoided by tracking



the timesteps to which they have been written. g on optimizations, such as copy
and constant propagation [13], to remove any egtras operations.

12.000 0x000C MOVE(0) 1, $P1[4] ;LD event cycle 1
12.001 0x000C SRL(1) $P1, 1, $P1
12.002 0x000C [$P1[4]] LD(1) *mem($A4), $A6_4

13.000 0x000C SRL(1) $P1, 1, $P1 ;LD event cycle 2
13.001 0x000C [$P1[3]] MOVE(1) $A6_4, $A6_3

14.000 0x000C SRL(1) $P1, 1, $P1 ;LD event cycle 3
14.001 0x000C [$P1[2]] MOVE(1) $A6_3, $A6_2

15.000 0x000C SRL(1) $P1, 1, $P1 ;LD event cycle 4
15.001 0x000C [$P1[1]] MOVE(1) $A6_2, $A6_1

16.000 0x000C LOOP: SRL(1)$P1,1,$P1 ;LD event cycle 5

16.001 0x0014 OR(0) $P1[0], $P2[0], $MP 0
16.002 0x001C OR(0) $MPO, $P3[0], $MP1
16.003 0x0024 OR(0) $MP1, $P4[0], $MP2
16.004 0x0034 OR(0) $MP2, $P5[0], $MP3

16.005 0x000C [$MP3] MOVE(1) $A6_1, $A6 ; int ersecting LDs 1-5

Fig. 8. Linearization of pipelined load (LD) instruction thevectorsum procedure

Figure 8 illustrates the linearization processhiea MST for the first pipelined LD
instruction in thevectorsum example of Figure 1. In timestep 12, an eventiggéred
for the LD instruction by posting a ‘1’ to the hidit in the virtual shift registePl.
Additionally, the LD instruction is modified to wei to virtual registeA6_4, and the
operation delay is changed from 5 cycles to 1 cyal¢he subsequent cycles 4 is
written toA6_3, A6_3 is written toA6_2, andA6_2 is written toA6_1, at which point
the linearization is propagated to th©OP block. A6 1 is finally written to the
physical registeA6 in timestep 16. Each of these move instructionguarded by a
predicate on &1 bit, which is right-shifted in each cycle along g@&me control path.
The same methodology is applied to each LD indwocin program. Although the
propagation instructions may read and write tosthene register in parallel, the one-
cycle delay on each instruction enforces the codata dependencies.

It is interesting to note that the pipelined LDtimstions have intersecting paths.
As an example, all five LD instructions will haveetr 5" cycles intersect in the same
timestep (16), wherd6 €< A6_1. To avoid extraneous instructions, the propagation
instructions are merged by OR-ing their predicassshown in the figure.



432 Linearizing Branch Operations

Unlike computational instructions, branch instrang do not propagate data. Rather,
they trigger a change in control flow after a certaumber of delay cycles. In
linearizing branch operations, only tlwent is propagated through the CFG, as
described above. At each branch execution poitthénCFG, which can only be the
end of a basic block, a copy of the branch insioacts inserted. The branch
instruction is predicated on the event shift-regisSimilar to the process above, if
two or more of the same branch instruction haversgcting paths, redundant
instructions may be eliminated by tracking the ste@s to which the instructions
have been written. Two or more of the same branskriction that execute at the
same point can be merged by OR-ing their predicates original branch instructions
are replaced with NOP instructions in order to rraimthe correct instruction flow.
Figure 10 illustrates the linearization processpipelined branch operations.

11.000 0x0008 MOVE(0) 1, $P1[5] ; branc h event cycle 1

11.001 0x0008 SRL(1) $P1, 1, $P1

11.002 0x0008 NOP(1) 1 ; branc h replaced with NOP
12.000. 0x0008‘ SRL(1) $P1, 1, $P1 ; branc h event cycle 2
13.000. 0xoooé SRL(1) $P1, 1, $P1 ; branc h event cycle 3
14.000. 0xoooé SRL(1) $P1, 1, $P1 ; branc h event cycle 4
15.000. 0xoooé SRL(1) $P1, 1, $P1 ; branc h event cycle 5
16.000. 0x0008‘ LOOP: SRL(1)$P1, 1, $P1 ; branc h event cycle 6

16.008 0x0008 OR(0) $P1[0], $P2[0], $MPO
16.009 0x0010 OR(0) $MPO, $P3[0], $MP1
16.010 0x0018 OR(0) $MP1, $P4[0], $MP2
16.011 0x0020 OR(0) $MP2, $P5[0], $MP3
16.012 0x0028 OR(0) $MP3, $P6[0], $MP4
16.013 0x003C [$MP4] GOTO(0) LOOP ; intersecti on branches 1-6

Fig. 9. Linearization of a pipelined branch instructiorttievectorsum procedure

433 Thelinearization Algorithm

Figure 9 presents our algorithm for linearizinggdiped operations. The procedure
has the same general organization as the algoptiesented by Cooper et al. [6] for
generating CFGs. The algorithm initially createsaaklist of instruction counters for
each basic block in the CFG in lines 1-3, and flemates through the worklist in lines
4-25. An instruction counter is particular to a d{¥p and holds a list of pending



instructions and a counter representing the remgirdlock cycles before each
instruction is executed. To prevent redundant il@na over blocks, in lines 8-9, the
algorithm checks that the block has not seen arthefpending instruction counters
before continuing. The algorithm then iterates aer block bywhole timesteps in
lines 10-20. The instructions in each timestepitmted through in lines 11-17, as
the algorithm searches in line 12 for previouslyisited pipelined instructions to add
to the instruction counter. Lines 13-15 add a ceufdr the branch instructions with
cycle delays greater than zero; the original branstruction is replaced with a NOP
instruction to maintain the correct program flowinés 16-17 add counters for all
multi-cycle instructions whose write-back time $adutside the block. Uniquavent
instructions are inserted for each pending insimacin lines 18-20, as described
above; those that have completed are removed fhenmstruction counter list. After
iterating over the instructions within each timestthe pending instruction counters
are decremented in line 21. At the conclusion ef iteration over timesteps in the
block, lines 22-26 propagate all pending countensew instruction counters for each
successor block edge; the new instruction courdegsadded to the worklist. The
algorithm terminates once no new instruction cotsngge encountered by any block
and the worklist is empty. The algorithm rungd(m) time, wheren is the number of
instructions in the program, assuming a small, @orisnumber of outgoing edges
between blocks.

Li neari ze_Pi pel i ned_Operations( CFG)
1 worklist = empty list of InstrCounters
2 for each basic block in CFG do
3 add InstrCounter(block) to worklist
4 while worklist->size() > 0 do
5 instr_counter = worklist->front()
6 remove instr_counter from worklist
7 block = instr_counter->block
8
9

if block has seen all live counters in instr_ counter then
continue
10 for each whol e timestep ts in block do
11  for each instruction i in timestep ts do
12 if i has not been seen by instr_counter t hen
13 if i is a branch instruction and i->del ay > 0 then
14 add {i:i->delay} to instr_counter
15 replace branch instruction i with NOP instruction
16 else if (i->timestep + i->delay) > bloc k->max_time
17 add {i:i->delay} to instr_counter
18 for each counter c in instr_counter do
19 insert a uni que event instruction for c in timestep ts
20 if ¢ = 0 then remove c from instr_count er

21  instr_counter->DecrementCounters()

22 ifinstr_counter has live counters

23  for each successor s of block do

24 target_instr_counter = InstrCounter(s)

25 add uni que live counters to target_instr_counter
26 add target_instr_counter to worklist

Fig. 10. Linearization algorithm for pipelined operations



4.4 Generating the Control and Data Flow Graph

In the previous sections we described how to bw@ldCFG and break data
dependencies in pipelined and scheduled assemtb. ¢o this section we combine
the two techniques to generate the complete CDH@. grocedure is described in
Figure 12, which takes a list of assembly instardi as input and returns a CDFG.
The procedure begins with a preprocessing stemgare that all branch instructions
in the program are predicated as described in tbgiqus section. The algorithm
constructs the CFG using Cooper’s algorithm, anehtlinearizes the pipelined
operations as described above. The data flow gsapifen generated from the newly
serialized instructions, based on the data depeydamalysis technique described in
Section 3. The procedure concludes by implementsiggle static-variable
assignment (SSA) [13], which is a method of bregkdata dependencies by ensuring
that every assignment in the CDFG has a uniquahbiarname.

Traditionally, a @-function is used in SSA to join multiple assignments to a
variable, stemming from different paths in the CHGe number of arguments to the
@-function is equal to the number of definitions of the valgafrom each point in the
CFG. This method often causes a significant battt&rwhen handling numerous data
paths. Interestingly, once the pipelined operatiorthe CDFG have been linearized,
the @-function becomes superfluous, as only the latest definitiba variable will
reach the end of the block and propagate througttdntrol flow. Those instructions
with multi-cycle delays that originally crossed isaslock boundaries have since been
serialized into multiple single-cycle instructionss a result, the latest definition of
each SSA variable may be assigned back to itsnaligiariable name at the end of the
block, thus eliminating the need for thifunction. Optimizations, such as copy
propagation and dead-code elimination [13], wilmmve extraneous assignment
operations created by this process.

Generate_CDFGQ( instr_list )
Predicate_Pipelined_Instrs( CFG )

CFG = Generate_Ctrl_Flow_Graph( instr_list )
Linearize_Pipelined_Operations( CFG )
CDFG = Generate_Data_Flow_Graph( CFG )
Generate_SSA( CDFG )

return CDFG

DU WN P

Fig. 11. Procedure for generating a CDFG

5 Experimental Results

The correctness of the methodology presented B paper was verified using the
FREEDOM compiler [11,19] on 8 highly pipelined béntarks in the Texas
Instruments C6000 DSP assembly language. The FRBEBGOmMpiler generated
CDFGs and RTL code targeting the Xilinx Virtex IP6A. Each benchmark was
simulated using Mentor Graphic’s ModelSim to verffi-true accuracy and obtain
cycle counts.



There has been little work reported on translatiighly pipelined software
binaries to RTL code for FPGAs. This makes comparigiith other approaches
difficult. However, it is interesting to considdret impact and effectiveness of this
algorithm in a high-level synthesis tool. Tablehbws comparisons in cycle counts
for the TI C6000 DSP and the Virtex Il FPGA, genedaby the FREEDOM
compiler. Also shown is the number of pipelined ragiens in each benchmark and
the number of instructions inserted during thednmation process to demonstrate the
impact on code size when using this approach.

Results indicate the FREEDOM compiler successfgbnerated the correct
CDFGs from the pipelined assembly code, allowingnglex optimizations and
scheduling to significantly reduce clock cyclestire FPGA design. On average,
approximately 9 instructions were added for eagrelpied operation and there was a
27% increase in code size during the linearizapoocess.Please note that these
values reflect the size of the design before CDFG optimizations, which will further
reduce implementation complexity. A detailed evaluation of the performance and
optimizations of the FREEDOM compiler has been presented in other work [11,19] .

Table 1. Experimental results on pipelined benchmarks ugiag-REEDOM compiler

# Pipelined # Added

Benchmark DSP Cycles | FPGA Cycles | Instructions Instructions
memmove 125747 2516 33 352 (24.7%)
memcpy 69615 2004 14 136 (52.3%)
divi 282301 16127 17 141 (27.3%)
mpyd 1329176 39669 26 269 (14.0%)
remi 260148 16888 13 130 (34.6%)
dsp_fir_gen 30851 685 49 683 (43.1%)
Ims_filter 33537580 773288 147 967 (13.7%)
noise_canceller_fir 8239397 163778 21 105 ( 5.3%)

6 Conclusions

This paper presents a methodology for correctlyeggnting the data dependencies
and data propagation when generating CDFGs frorhhhigipelined and scheduled
assembly code. This process consists of threesstggaerating a control flow graph,
linearizing the assembly code, and generating #tia flow graph. We use a known
method for generating the control flow graph frooheduled assembly code and
describe further techniques for handling more cexprchitectures that employ
parallel instruction sets and dynamic branching.piésent a linearization process, in
which pipelined structures are serialized into dinassembly. This allows for proper
data dependency analysis when generating the ldatagyfaph.

The work was verified in the FREEDOM compiler omighly pipelined software
binaries for the TI C6000 DSP, targeting the Xilivixtex Il FPGA. Results indicate
that data dependencies were correctly identifiedblng the compiler to perform
complex optimizations and scheduling to reducelkctyeles in the designs.
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