
Generation of Control and Data Flow Graphs from
Scheduled and Pipelined Assembly Code

David C. Zaretsky1, Gaurav Mittal1, Robert Dick1, and Prith Banerjee2

1 Department of Electrical Engineering and Computer Science, Northwestern University
2145 N. Sheridan Road, Evanston, IL 60208-3118

{dcz, mittal, dickrp}@ece.northwestern.edu
2 College of Engineering, University of Illinois at Chicago

851 South Morgan Street, Chicago, IL 60607-7043
prith@uic.edu

Abstract. High-level synthesis tools generally convert abstract designs
described in a high-level language into a control and data flow graph (CDFG),
which is then optimized and mapped to hardware. However, there has been little
work on generating CDFGs from highly pipelined software binaries, which
complicate the problem of determining data flow propagation and
dependencies. This paper presents a methodology for generating CDFGs from
highly pipelined and scheduled assembly code that correctly represents the data
dependencies and propagation of data through the program control flow. This
process consists of three stages: generating a control flow graph, linearizing the
assembly code, and generating the data flow graph. The proposed methodology
was implemented in the FREEDOM compiler and tested on 8 highly pipelined
software binaries. Results indicate that data dependencies were correctly
identified in the designs, allowing the compiler to perform complex
optimizations to reduce clock cycles.

1 Introduction

Traditionally, the high-level synthesis problem is one of transforming an abstract,
timing-independent specification of an application into a detailed hardware design.
High-level synthesis tools generally convert the abstract design into a control and data
flow graph (CDFG) that is composed of nodes representing inputs, outputs, and
operations. The CDFG is a fundamental component of most compilers, where most
optimizations and design decisions are performed to improve frequency, power,
timing, and area. Building a CDFG consists of a two-step process: building the control
flow graph (CFG), which represents the path of control in the design, and building the
data flow graph (DFG), which represents the data dependencies in the design.
However, when high-level language constructs are not readily available, such as in the
case where legacy code for an application on an older processor is to be migrated to a
new processor architecture, a more interesting problem presents itself, known as
binary translation. Much research has been performed on CDFG generation from
software binaries and assembly code. However, there has been very little work on
generating complete CDFGs from scheduled or pipelined software binaries. Data

dependency analysis of such binaries is more challenging than that of sequential
binaries or high-level language applications.

When translating assembly codes from digital signal processors (DSPs), it is
common to encounter highly pipelined software binaries that have been optimized
manually or by a compiler. Consider the Texas Instrument C6000 DSP assembly code
for the vectorsum function in Figure 1. In this architecture, branch operations contain
5 delay slots and loads contain 4 delay slots. The | | symbol indicates the instruction is
executed in parallel with the previous instruction and the [] symbol indicates the
operation is predicated on an operand. Clearly, the vectorsum code is highly
pipelined; each branch instruction is executed in consecutive iterations of the loop.
Moreover, the dependencies of the ADD instruction in the loop body change with
each iteration of the loop: A6 is dependent on the load at instruction 0x0004 in the
first iteration of the loop, A6 is dependent on the load at instruction 0x000C in the
second iteration of the loop, etc. Generating a CDFG to represent this pipelined
structure is very challenging. In doing so, one must consider the varying data
dependencies and also ensure that each branch is executed at its proper time and
place. Branch instructions that fall within the delay slots of other branch instructions
complicate the structure of the control flow graph. For instance, when the predicate
condition, A1, on the branch instruction in the loop body is false, the previous branch
instructions that were encountered during the execution sequence will continue to
propagate and execute. This may occur within the loop, or possibly after exiting the
loop. More complex software pipelines may contain branch instructions with various
targets, producing multiple exit points in a CDFG block.

0x0000 VECTORSUM: ZERO A7

0x0004 LDW *A4++, A6 ; 4 delay slo ts

0x0008 || B LOOP ; 5 delay slo ts

0x000C LDW *A4++, A6

0x0010 || B LOOP

0x0014 LDW *A4++, A6

0x0018 || B LOOP

0x001C LDW *A4++, A6

0x0020 || B LOOP

0x0024 LDW *A4++, A6

0x0028 || B LOOP

0x002C || SUB A1, 4, A1

0x0030 LOOP: ADD A6, A7, A7

0x0034 || [A1] LDW *A4++, A6

0x0038 || [A1] SUB A1, 1, A1

0x003C || [A1] B LOOP ; branches ex ecutes here

0x0040 STW A7, *A5

0x0044 NOP 4

Fig. 1. TI C6000 assembly code for a pipelined vectorsum procedure

In this paper, we present a methodology for generating CDFGs from scheduled and
pipelined assembly code. This process consists of three stages: generating a control
flow graph, linearizing the assembly code, and generating the data flow graph. We use
the methods described by Cooper et al. [6] for generating a CFG from scheduled
assembly code. In addition, we extend their work to support more complex
architectures that employ parallel instruction sets and dynamic branching. We also
present a linearization process, in which pipelined structures are serialized into linear
assembly. This allows for proper data dependency analysis when constructing data
flow graphs. This methodology was incorporated in the FREEDOM compiler, which
translates DSP assembly code into hardware descriptions for FPGAs. The techniques
described in this paper were briefly discussed in previous work [11,19]; here we
present a more refined and elegant approach in greater detail.

The remainder of this paper is structured as follows: Section 2 discusses related
work in the area of CDFG generation from assembly code. Section 3 provides an
overview of the FREEDOM compiler infrastructure and its intermediate language
architecture. Section 4 describes our method of generating a CDFG from scheduled
and pipelined assembly code in detail. Finally, Sections 5 and 6 present experimental
results and conclusions, respectively.

2 Related Work

There has been a great deal of fundamental research and study of binary translation
and decompilation. Cifuentes et al. [3,4,5] described methods for converting assembly
or binary code from one processor’s instruction set architecture (ISA) to another, as
well as decompilation of software binaries to high-level languages. Kruegel et al. [9]
described a technique for decompilation of obfuscated binaries. Stitt and Vahid
[16,17] reported work on hardware-software partitioning of software binaries. Levine
and Schmidt [10] proposed a hybrid architecture called HASTE, in which instructions
from an embedded processor are dynamically compiled onto a reconfigurable
computational fabric using a hardware compilation unit. Ye et al. [18] developed a
similar compiler system for the CHIMAERA architecture.

Control and data flow analysis is essential to binary translation. Cifuentes et al. [5]
described methods of control and data flow analysis in translating assembly to a high-
level language. Kastner and Wilhelm [8] reported work on generating CFGs from
assembly code. Decker and Kastner [7] described a method of reconstructing a CFG
from predicated assembly code. Amme et al. [1] presented work on a memory aliasing
technique, in which data dependency analysis is computed on memory operations
using a value-based analysis and modified version of the GCD test [2].

There has been very little work on generating CDFGs from highly pipelined
software binaries in which branch instructions appear in the delay slots of other
branch instructions. The most comprehensive work on building CFGs from pipelined
assembly code was reported by Cooper et al. [6]. However, their method does not
consider the complexities of modern processor architectures that utilize instruction-
level parallelism and dynamic branching techniques. In this paper, we address these

issues and present methods to handle CDFG generation from software binaries that
feature these sophisticated scheduling techniques.

3 Overview of the FREEDOM Compiler

This section provides a brief overview of the FREEDOM compiler infrastructure,
as shown in Figure 2. The compiler was designed to have a common entry point for
all assembly languages. Towards this effort, the front-end uses a description of the
source processor’s ISA in order to configure the assembly language parser. The ISA
specifications are written in SLED from the New Jersey Machine-Code toolkit
[14,15]. The parser generates a virtual assembly representation called the Machine
Language Syntax Tree (MST), which has a syntax similar to the MIPS ISA. The MST
is generic enough to encapsulate most ISAs, including those that support predicated
and parallel instruction sets. All MST instructions are three-operand, predicated
instructions in the format: [pred] op src1 src2 dst. A CDFG is generated from the
MST, where optimizations, scheduling, and resource binding are preformed. The
CDFG is then translated into a high-level Hardware Description Language (HDL) that
models processes, concurrency, and finite state machines. Additional optimizations
and customizations are performed on the HDL for the target architecture. This
information is acquired via the Architecture Description Language (ADL) files. The
HDL is translated directly to RTL VHDL and Verilog to be mapped onto FPGAs, and
a testbench is generated to verify that the output is correct.

DSP Assembly
Language Semantics

DSP
Assembly Code

DSP
Binary Code

Parser

MST

CDFG

HDL

Architecture
Description
Language

RTL VHDL RTL Verilog Testbench

Optimizations, Linearization,
and Procedure Extraction

Optimizations,
Loop Unrolling, Scheduling,

and Resource Binding

Optimizations,
Customizations

DSP Assembly
Language Semantics

DSP
Assembly Code

DSP
Binary Code

Parser

MST

CDFG

HDL

Architecture
Description
Language

RTL VHDL RTL Verilog Testbench

Optimizations, Linearization,
and Procedure Extraction

Optimizations,
Loop Unrolling, Scheduling,

and Resource Binding

Optimizations,
Customizations

Fig. 2. Overview of the FREEDOM compiler infrastructure

The fixed number of physical registers on a processor necessitates advanced

register reuse algorithms in compilers. These optimizations often introduce false
dependencies based on register names, resulting in difficulties when determining data
dependencies for scheduled or pipelined binaries and parallel instruction sets. To
resolve these discrepancies, each MST instruction is assigned a timestep, specifying a

linear instruction order, and an operation delay, equivalent to the number of execution
cycles. Each cycle begins with an integer-based timestep, T. Each instruction n in a
parallel instruction set is assigned the timestep Tn = T + (0.01 * n). Assembly
instructions may be translated into more than one MST instruction. Each instruction m
in an expanded instruction set is assigned the timestep Tm = Tn + (0.0001 * m). The
write-back time for the instruction, or the cycle in which the result is valid, is defined
as wb = timestep + delay. If an operation delay is zero, the resulting data is valid
instantaneously. However, an operation with delay greater than zero has its write-back
time rounded down to the nearest whole number, or floor(timestep), resulting in valid
data at the beginning of the write-back cycle.

Figure 3 illustrates how the instruction timestep and delay are used to determine
data dependencies in the MST. In the first instruction, the MULT operation has one
delay slot, and the resulting value in register A4 is not valid until the beginning of
cycle 3. In cycle 2, the result of the LD instruction is not valid until the beginning of
cycle 7, and the result of the ADD instruction is not valid until the beginning of cycle
3. Consequently, the ADD instruction in cycle 3 is dependant upon the result of the
MULT operation in cycle 1 and the result of the ADD operation in cycle 2. Likewise,
the first three instructions are dependant upon the same source register, A4.

TIMESTEP PC OP DELAY SRC1 SRC2 DST

 1.0000 0X0020 MULT (2) $A4, 2, $A4

 2.0000 0X0024 LD (5) *($A4), $A2

 2.0100 0X0028 ADD (1) $A4, 4, $A2

 3.0000 0X002c ADD (1) $A4, $A2, $A3

Fig. 3. MST instructions containing timesteps and delays for determining data dependencies

4 Building a Control and Data Flow Graph

This section presents our methodology for generating a CDFG from scheduled and
pipelined assembly code. This process consists of three stages: generating a control
flow graph, linearizing the assembly code, and generating a data flow graph.

4.1 Generating a Control Flow Graph

Cooper et al. [6] presented a three-step process for building a CFG from scheduled
assembly code, which was used as the first stage in the proposed work. The first step
of their algorithm partitions the code at labels (entry points) into a set of basic blocks.
During this process, they assume all entry points are complete, and no branch targets
an instruction without a label. The second step adds edges between basic blocks in the
CFG to represent the normal flow of control. Here, they only consider non-pipelined
branch instructions, or those that do not appear within the delay slots of other branch
instructions. Pipelined branches are handled in the third step using an iterative
algorithm that simulates the flow of control for the program by propagating branch
and counter information from block to block. Their method is shown to terminate in

linear time for CFGs containing only branches with explicit targets. Figure 4
illustrates the CFG generated for the vectorsum procedure in Figure 1.

0x0000 VECTORSUM: ZERO A7
0x0004 LDW *A4++, A6
0x0008 || B LOOP
0x000C LDW *A4++, A6
0x0010 || B LOOP
0x0014 LDW *A4++, A6
0x0018 || B LOOP
0x001C LDW *A4++, A6
0x0020 || B LOOP
0x0024 LDW *A4++, A6
0x0028 || B LOOP
0x002C || SUB A1, 4, A1

0x0030 LOOP: ADD A6, A7, A7
0x0034 || [A1] LDW *A4++, A6
0x0038 || [A1] SUB A1, 1, A1
0x003C || [A1] B LOOP

0x0040 STW A7, *A5

0x0044 NOP 1

0x0044 NOP 1

0x0044 NOP 1

0x0044 NOP 1

0x0000 VECTORSUM: ZERO A7
0x0004 LDW *A4++, A6
0x0008 || B LOOP
0x000C LDW *A4++, A6
0x0010 || B LOOP
0x0014 LDW *A4++, A6
0x0018 || B LOOP
0x001C LDW *A4++, A6
0x0020 || B LOOP
0x0024 LDW *A4++, A6
0x0028 || B LOOP
0x002C || SUB A1, 4, A1

0x0030 LOOP: ADD A6, A7, A7
0x0034 || [A1] LDW *A4++, A6
0x0038 || [A1] SUB A1, 1, A1
0x003C || [A1] B LOOP

0x0040 STW A7, *A5

0x0044 NOP 1

0x0044 NOP 1

0x0044 NOP 1

0x0044 NOP 1

Fig. 4. Control flow graph for vectorsum

In practice, the assumptions made in their work pose some difficulties in

generating CFGs for some modern processor architectures. For instance, they assume
all labels and branch targets are well defined. However, some disassemblers limit the
labels to a procedure level only and refrain from including them locally within
procedure bounds. In some architectures, registers may be used in branch targets, as in
the case of a long jump where a static PC value is loaded into the register prior to the
branch instruction. To handle these situations, we introduce a pre-processing step that
determines all static branch targets and adds the respective labels to the instructions.
Some architectures may also support dynamic branch targets, in which the destination
value may be passed to a register as a function parameter, such as with procedure
prologues and epilogues. In these situations, we take an optimistic approach by
assuming the dynamic branch operation is a procedure call. The branch is temporarily
treated as a NOP instruction when building the initial CFG to allow the control flow
to propagate through. We rely on post-processing steps, such as alias analysis and
procedure extraction to determine the possible destinations [12]. The CFG is then
regenerated with the newly identified destination values.

Many of today’s processor architectures utilize instruction-level parallelism to
achieve higher performances, which complicates generation of CFGs. For instance, a
branch destination may have a target within a parallel set of instructions. This would
break up the control flow at intermediate points within a basic block, creating
erroneous data dependencies. In Figure 5, the ADD, SUB, and SRL instructions are
scheduled in parallel. However, if the predicated branch is taken, the ADD instruction
is not executed. Consequently, the entry label on the SUB instruction partitions the
control flow in the middle of the parallel set, placing the latter two instructions in a
separate basic block. This forces the A7 operand in the SRL instruction to use the
resulting value from the ADD instruction in the previous block. To account for such
discrepancies, we introduce a procedure that checks for entry points (labels) within a
parallel set of instructions. If such an entry point exists, the instructions falling below
the entry point are replicated and added to the top portion of the parallel set. Figure 6
shows the MST code after instruction replication. The SUB and SRL instructions have
been replicated and a branch operation has been added to jump over the replicated
code segment. We rely on subsequent optimizations in the CDFG, such as code-
hoisting [13], to eliminate superfluous operations.

0x0800 [A1] B L1

0x0804 NOP 5

0x0808 ADD A4, A7, A7

0x080C L1: || SUB A4, 1, A4

0x0810 || SRL A4, A7, A8

0x0814 L2: ...

Fig. 5. Branch target inside a parallel instruction set

10.0000 0x0800 [A1] GOTO (6) L1

11.0000 0x0804 NOP (5) 5

16.0000 0x0808 ADD (1) $A4, $A7, $A7

16.0100 0x080C SUB (1) $A4, 1, $A4 ; re plicated SUB

16.0200 0x0810 SRL (1) $A4, $A7, $A8 ; re plicated SRL

16.0300 0x0810 GOTO (0) L2 ; ad ded ‘branch-over’

17.0000 0x080C L1: SUB (1) $A4, 1, $A4

17.0100 0x0810 SRL (1) $A4, $A7, $A8

18.0000 0x0814 L2: ...

Fig. 6. MST representation with instruction replication

4.2 Event-Triggered Operations

In the previous section, a methodology for generating a CFG from pipelined assembly
code was presented. The CFG represents the flow of control in the program via edges
connecting basic blocks in the graph. However, the CFG does not inherently contain
any information regarding propagation delay. In translating pipelined or scheduled
assembly code from one architecture to another, it is essential that the compiler

capture the propagation delay and data dependencies correctly. Failure to do so may
result in false data dependencies, incorrect data value propagation, and possibly an ill-
terminated or non-terminating program. Referring back to the vectorsum procedure in
Figure 1, we find that the main loop body will execute an unknown number of times
until the predicate condition on the branch instruction is false, namely, when A1 = 0.
At that point, the loop will continue to iterate for 5 more cycles until the branches
within the pipeline have completed. During this time, data is still computed and
propagated through the loop. Should the compiler not consider the propagation delay
on the branch instructions, the loop may terminate early, producing erroneous data.
Similarly, failure to consider the propagation delay in the pipelined load instructions
will also result in erroneous data.

As a solution, we introduce the concept of an event-triggered operation, composed
of a trigger and an execute stage. An event trigger is analogous to the read stage in a
pipelined architecture, where the instruction is fetched and register values are read; an
event execute is analogous to the write-back stage in the pipeline, during which the
values are written to the destination register or memory. The event triggering and
execution stages are offset by the delay of the operation.

An operation event is encapsulated in the MST language using a virtual shift
register with a precision d, corresponding to the number of delay cycles for the
operation. Virtual registers are temporary operands created by the compiler that do not
exist within the framework of the source architecture’s physical registers. In practice,
this results in the addition of a very small shift register since most ISAs generally
have no more than 4-6 delay slots in any given multi-cycle instruction. When a
pipelined instruction is encountered during the normal flow of the program, an event
is triggered by assigning a ‘1’ to the highest bit (d-1) in the shift register. In each
successive cycle, a shift-right logical operation is performed on the register. The event
is executed after d cycles, when a ‘1’ appears in the zero bit of the shift register.

1 1 0 0 0 0

1 1 1 0 0 0

1 1 1 1 0 0

1 1 1 1 1 0

0 1 1 1 1 1

0 0 1 1 1 1

Event 1 Triggered

Event 2 Triggered

Event 3 Triggered

Event 4 Triggered

Event 5 Triggered

Event 1 Executed

Event 2 Executed

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

Iteration 7

0 0 0 0 0 1 Event 5 ExecutedIteration 10

Bit 5 Bit 0SRL

1 0 0 0 0 0

1 1 0 0 0 01 1 0 0 0 01 1 0 0 0 0

1 1 1 0 0 01 1 1 0 0 01 1 1 0 0 0

1 1 1 1 0 01 1 1 1 0 01 1 1 1 0 0

1 1 1 1 1 01 1 1 1 1 01 1 1 1 1 0

0 1 1 1 1 10 1 1 1 1 10 1 1 1 1 1

0 0 1 1 1 10 0 1 1 1 10 0 1 1 1 1

Event 1 Triggered

Event 2 Triggered

Event 3 Triggered

Event 4 Triggered

Event 5 Triggered

Event 1 Executed

Event 2 Executed

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

Iteration 7

0 0 0 0 0 10 0 0 0 0 10 0 0 0 0 1 Event 5 ExecutedIteration 10

Bit 5 Bit 0SRL

1 0 0 0 0 01 0 0 0 0 01 0 0 0 0 0

Fig. 7. Event-triggering for a pipelined branch operation in a loop body

Figure 7 illustrates the event triggering for the branch operation in the loop body of

the vectorsum procedure, which has an operation delay of 6 cycles. In the first
iteration of the loop, an event is triggered when the branch instruction is encountered

by setting the high bit of shift register. In each subsequent cycle, the register is shifted
right while a new event is triggered. After six iterations, event 1 is executed and the
branch to LOOP is taken. This is followed by subsequent event executions through
the tenth iteration of the loop, until the pipeline in the shift register has been cleared.

The technique described here is utilized in the linearization process for pipelined
operations as discussed in the following sections.

4.3 Linearizing Pipelined Operations

This section describes the linearization process for pipelined operations. The concept
of this process is to serialize the pipelined assembly instructions into linear assembly,
such that the each pipelined instruction has a well-defined data flow path. The process
for linearizing computational operations (arithmetic, logical, memory, etc.) and
branch operations are described independently, as they function differently in pipeline
architectures. The linearization process assumes that the CFG is complete, i.e., no
edges will be inserted between blocks in the future. Consequently, if new edges are
added in the future, data propagation and data dependencies are not guaranteed to be
correct. To ensure its completeness, we force the algorithm to cover all possible
control paths when generating the CFG. This is accomplished in a preprocessing pass
that ensures all branch instructions in the program are predicated. A constant predicate
of ‘1’, whose condition always resolves to true, is added to all non-predicated branch
instructions. This forces the branch to be treated as a conditional, and allows the
control flow to propagate to the fall-through block. Subsequent optimizations, such as
dead-code elimination [13], will remove any resulting extraneous operations.

4.3.1 Linearizing Computational Operations

In the linearization process for computational operations, multi-cycle instructions are
serialized into a well-defined data flow path along the pipeline. In order to accomplish
this task, virtual registers are introduced to break multi-cycle instructions into a
sequence of multiple single-cycle instructions. Each instruction in the sequence is
guarded by a predicate on an event-triggering register, as described above. Should the
program encounter the instruction through a path outside the normal pipeline data
flow path, the predicate will prevent the operation from executing.

The linearization process works as follows: For an instruction with n delay slots,
the original instruction is modified to write to a temporary virtual register Rn, and the
delay of the instruction is changed to a single cycle. In each of the subsequent n-1
cycles, the value is propagated through virtual registers along the pipelined data flow
path by assigning Rn-1�Rn, Rn-2�Rn-1, …, R0�R1 in sequence, where R0 is the
original register name. Each of these instructions is predicated on its respective cycle
bit of the shift register: P[n-1] through P[0]. If the end of a basic block is reached, the
linearization is propagated to the successor blocks. This approach assumes that no two
instructions are scheduled such that both have the same destination register and write-
back stages in the same cycle. This is a fair assumption, since compilers generally do
not produce code resulting in race conditions. If two or more identical instructions
have intersecting pipeline paths, redundant instructions may be avoided by tracking

the timesteps to which they have been written. We rely on optimizations, such as copy
and constant propagation [13], to remove any extraneous operations.

 : :

12.000 0x000C MOVE(0) 1, $P1[4] ; LD event cycle 1

12.001 0x000C SRL(1) $P1, 1, $P1

12.002 0x000C [$P1[4]] LD(1) *mem($A4), $A6_4

 : :

13.000 0x000C SRL(1) $P1, 1, $P1 ; LD event cycle 2

13.001 0x000C [$P1[3]] MOVE(1) $A6_4, $A6_3

 : :

14.000 0x000C SRL(1) $P1, 1, $P1 ; LD event cycle 3

14.001 0x000C [$P1[2]] MOVE(1) $A6_3, $A6_2

 : :

15.000 0x000C SRL(1) $P1, 1, $P1 ; LD event cycle 4

15.001 0x000C [$P1[1]] MOVE(1) $A6_2, $A6_1

 : :

16.000 0x000C LOOP: SRL(1) $P1, 1, $P1 ; LD event cycle 5

16.001 0x0014 OR(0) $P1[0], $P2[0], $MP 0

16.002 0x001C OR(0) $MP0, $P3[0], $MP1

16.003 0x0024 OR(0) $MP1, $P4[0], $MP2

16.004 0x0034 OR(0) $MP2, $P5[0], $MP3

16.005 0x000C [$MP3] MOVE(1) $A6_1, $A6 ; int ersecting LDs 1-5

 : :

Fig. 8. Linearization of pipelined load (LD) instruction in the vectorsum procedure

Figure 8 illustrates the linearization process in the MST for the first pipelined LD
instruction in the vectorsum example of Figure 1. In timestep 12, an event is triggered
for the LD instruction by posting a ‘1’ to the high bit in the virtual shift register P1.
Additionally, the LD instruction is modified to write to virtual register A6_4, and the
operation delay is changed from 5 cycles to 1 cycle. In the subsequent cycles, A6_4 is
written to A6_3, A6_3 is written to A6_2, and A6_2 is written to A6_1, at which point
the linearization is propagated to the LOOP block. A6_1 is finally written to the
physical register A6 in timestep 16. Each of these move instructions is guarded by a
predicate on a P1 bit, which is right-shifted in each cycle along the same control path.
The same methodology is applied to each LD instruction in program. Although the
propagation instructions may read and write to the same register in parallel, the one-
cycle delay on each instruction enforces the correct data dependencies.

It is interesting to note that the pipelined LD instructions have intersecting paths.
As an example, all five LD instructions will have their 5th cycles intersect in the same
timestep (16), where A6 � A6_1. To avoid extraneous instructions, the propagation
instructions are merged by OR-ing their predicates, as shown in the figure.

4.3.2 Linearizing Branch Operations

Unlike computational instructions, branch instructions do not propagate data. Rather,
they trigger a change in control flow after a certain number of delay cycles. In
linearizing branch operations, only the event is propagated through the CFG, as
described above. At each branch execution point in the CFG, which can only be the
end of a basic block, a copy of the branch instruction is inserted. The branch
instruction is predicated on the event shift-register. Similar to the process above, if
two or more of the same branch instruction have intersecting paths, redundant
instructions may be eliminated by tracking the timesteps to which the instructions
have been written. Two or more of the same branch instruction that execute at the
same point can be merged by OR-ing their predicates. The original branch instructions
are replaced with NOP instructions in order to maintain the correct instruction flow.
Figure 10 illustrates the linearization process for pipelined branch operations.

 : :

11.000 0x0008 MOVE(0) 1, $P1[5] ; branc h event cycle 1

11.001 0x0008 SRL(1) $P1, 1, $P1

11.002 0x0008 NOP(1) 1 ; branc h replaced with NOP

 : :

12.000 0x0008 SRL(1) $P1, 1, $P1 ; branc h event cycle 2

 : :

13.000 0x0008 SRL(1) $P1, 1, $P1 ; branc h event cycle 3

 : :

14.000 0x0008 SRL(1) $P1, 1, $P1 ; branc h event cycle 4

 : :

15.000 0x0008 SRL(1) $P1, 1, $P1 ; branc h event cycle 5

 : :

16.000 0x0008 LOOP: SRL(1) $P1, 1, $P1 ; branc h event cycle 6

16.008 0x0008 OR(0) $P1[0], $P2[0], $MP0

16.009 0x0010 OR(0) $MP0, $P3[0], $MP1

16.010 0x0018 OR(0) $MP1, $P4[0], $MP2

16.011 0x0020 OR(0) $MP2, $P5[0], $MP3

16.012 0x0028 OR(0) $MP3, $P6[0], $MP4

16.013 0x003C [$MP4] GOTO(0) LOOP ; intersecti on branches 1-6

 : :

Fig. 9. Linearization of a pipelined branch instruction in the vectorsum procedure

4.3.3 The Linearization Algorithm

Figure 9 presents our algorithm for linearizing pipelined operations. The procedure
has the same general organization as the algorithm presented by Cooper et al. [6] for
generating CFGs. The algorithm initially creates a worklist of instruction counters for
each basic block in the CFG in lines 1-3, and then iterates through the worklist in lines
4-25. An instruction counter is particular to a block, and holds a list of pending

instructions and a counter representing the remaining clock cycles before each
instruction is executed. To prevent redundant iterations over blocks, in lines 8-9, the
algorithm checks that the block has not seen any of the pending instruction counters
before continuing. The algorithm then iterates over the block by whole timesteps in
lines 10-20. The instructions in each timestep are iterated through in lines 11-17, as
the algorithm searches in line 12 for previously unvisited pipelined instructions to add
to the instruction counter. Lines 13-15 add a counter for the branch instructions with
cycle delays greater than zero; the original branch instruction is replaced with a NOP
instruction to maintain the correct program flow. Lines 16-17 add counters for all
multi-cycle instructions whose write-back time falls outside the block. Unique event
instructions are inserted for each pending instruction in lines 18-20, as described
above; those that have completed are removed from the instruction counter list. After
iterating over the instructions within each timestep, the pending instruction counters
are decremented in line 21. At the conclusion of the iteration over timesteps in the
block, lines 22-26 propagate all pending counters to new instruction counters for each
successor block edge; the new instruction counters are added to the worklist. The
algorithm terminates once no new instruction counters are encountered by any block
and the worklist is empty. The algorithm runs in O(n) time, where n is the number of
instructions in the program, assuming a small, constant number of outgoing edges
between blocks.

 Linearize_Pipelined_Operations(CFG)
 1 worklist = empty list of InstrCounters
 2 for each basic block in CFG do
 3 add InstrCounter(block) to worklist
 4 while worklist->size() > 0 do
 5 instr_counter = worklist->front()
 6 remove instr_counter from worklist
 7 block = instr_counter->block
 8 if block has seen all live counters in instr_ counter then
 9 continue
10 for each whole timestep ts in block do
11 for each instruction i in timestep ts do
12 if i has not been seen by instr_counter t hen
13 if i is a branch instruction and i->del ay > 0 then
14 add {i:i->delay} to instr_counter
15 replace branch instruction i with NOP instruction
16 else if (i->timestep + i->delay) > bloc k->max_time
17 add {i:i->delay} to instr_counter
18 for each counter c in instr_counter do
19 insert a unique event instruction for c in timestep ts
20 if c = 0 then remove c from instr_count er
21 instr_counter->DecrementCounters()
22 if instr_counter has live counters
23 for each successor s of block do
24 target_instr_counter = InstrCounter(s)
25 add unique live counters to target_instr_counter
26 add target_instr_counter to worklist

Fig. 10. Linearization algorithm for pipelined operations

4.4 Generating the Control and Data Flow Graph

In the previous sections we described how to build a CFG and break data
dependencies in pipelined and scheduled assembly code. In this section we combine
the two techniques to generate the complete CDFG. The procedure is described in
Figure 12, which takes a list of assembly instructions as input and returns a CDFG.
The procedure begins with a preprocessing step to ensure that all branch instructions
in the program are predicated as described in the previous section. The algorithm
constructs the CFG using Cooper’s algorithm, and then linearizes the pipelined
operations as described above. The data flow graph is then generated from the newly
serialized instructions, based on the data dependency analysis technique described in
Section 3. The procedure concludes by implementing single static-variable
assignment (SSA) [13], which is a method of breaking data dependencies by ensuring
that every assignment in the CDFG has a unique variable name.

Traditionally, a
Φ

-function is used in SSA to join multiple assignments to a
variable, stemming from different paths in the CFG. The number of arguments to the Φ

-function is equal to the number of definitions of the variable from each point in the
CFG. This method often causes a significant bottleneck when handling numerous data
paths. Interestingly, once the pipelined operations in the CDFG have been linearized,
the

Φ
-function becomes superfluous, as only the latest definition of a variable will

reach the end of the block and propagate through the control flow. Those instructions
with multi-cycle delays that originally crossed basic block boundaries have since been
serialized into multiple single-cycle instructions. As a result, the latest definition of
each SSA variable may be assigned back to its original variable name at the end of the
block, thus eliminating the need for the

Φ
-function. Optimizations, such as copy

propagation and dead-code elimination [13], will remove extraneous assignment
operations created by this process.

 Generate_CDFG(instr_list)
1 Predicate_Pipelined_Instrs(CFG)
2 CFG = Generate_Ctrl_Flow_Graph(instr_list)
3 Linearize_Pipelined_Operations(CFG)
4 CDFG = Generate_Data_Flow_Graph(CFG)
5 Generate_SSA(CDFG)
6 return CDFG

Fig. 11. Procedure for generating a CDFG

5 Experimental Results

The correctness of the methodology presented in this paper was verified using the
FREEDOM compiler [11,19] on 8 highly pipelined benchmarks in the Texas
Instruments C6000 DSP assembly language. The FREEDOM compiler generated
CDFGs and RTL code targeting the Xilinx Virtex II FPGA. Each benchmark was
simulated using Mentor Graphic’s ModelSim to verify bit-true accuracy and obtain
cycle counts.

There has been little work reported on translating highly pipelined software
binaries to RTL code for FPGAs. This makes comparison with other approaches
difficult. However, it is interesting to consider the impact and effectiveness of this
algorithm in a high-level synthesis tool. Table 1 shows comparisons in cycle counts
for the TI C6000 DSP and the Virtex II FPGA, generated by the FREEDOM
compiler. Also shown is the number of pipelined operations in each benchmark and
the number of instructions inserted during the linearization process to demonstrate the
impact on code size when using this approach.

Results indicate the FREEDOM compiler successfully generated the correct
CDFGs from the pipelined assembly code, allowing complex optimizations and
scheduling to significantly reduce clock cycles in the FPGA design. On average,
approximately 9 instructions were added for each pipelined operation and there was a
27% increase in code size during the linearization process. Please note that these
values reflect the size of the design before CDFG optimizations, which will further
reduce implementation complexity. A detailed evaluation of the performance and
optimizations of the FREEDOM compiler has been presented in other work [11,19].

Table 1. Experimental results on pipelined benchmarks using the FREEDOM compiler

Benchmark

DSP Cycles

FPGA Cycles

Pipelined
Instructions

Added
Instructions

memmove 125747 2516 33 352 (24.7%)

memcpy 69615 2004 14 136 (52.3%)

divi 282301 16127 17 141 (27.3%)

mpyd 1329176 39669 26 269 (14.0%)
remi 260148 16888 13 130 (34.6%)

dsp_fir_gen 30851 685 49 683 (43.1%)

lms_filter 33537580 773288 147 967 (13.7%)

noise_canceller_fir 8239397 163778 21 105 (5.3%)

6 Conclusions

This paper presents a methodology for correctly representing the data dependencies
and data propagation when generating CDFGs from highly pipelined and scheduled
assembly code. This process consists of three stages: generating a control flow graph,
linearizing the assembly code, and generating the data flow graph. We use a known
method for generating the control flow graph from scheduled assembly code and
describe further techniques for handling more complex architectures that employ
parallel instruction sets and dynamic branching. We present a linearization process, in
which pipelined structures are serialized into linear assembly. This allows for proper
data dependency analysis when generating the data flow graph.

The work was verified in the FREEDOM compiler on 8 highly pipelined software
binaries for the TI C6000 DSP, targeting the Xilinx Virtex II FPGA. Results indicate
that data dependencies were correctly identified, enabling the compiler to perform
complex optimizations and scheduling to reduce clock cycles in the designs.

References

1. Amme W, Braun P, Thomasset F, and Zehendner E (2000) Data Dependence Analysis of
Assembly Code. International Journal of Parallel Programming, vol. 28, issue 5.

2. Banerjee U (1988) Dependence Analysis for Supercomputers. Kluwer Academic
Publishers, Norwell, MA.

3. Cifuentes C and Gough K (1993) A Methodology for Decomposition. Proceedings for
XIX Conferencia Latinoamericana de Informatica. Buenos Aires, Argentina, pp 257-266.

4. Cifuentas C and Malhotra V (1996) Binary Translation: Static, Dynamic, Retargetable?
Proceedings for the International Conference On Software Maintenance (ICSM).
Monterey, CA, pp 340-349.

5. Cifuentes C, Simon D, and Fraboulet A (1998) Assembly to High-Level Language
Translation. Proceedings of the International Conference on Software Maintenance
(ICSM). Washington, DC, pp 228-237.

6. Cooper K, Harvey T, and Waterman T (2002) Building a Control-Flow Graph from
Scheduled Assembly Code. Technical Report 02-399. Department of Computer Science,
Rice University, Houston, TX.

7. Decker B and Kästner D (2003) Reconstructing Control Flow from Predicated Assembly
Code. Proceedings of the 7th International Workshop on Software and Compilers for
Embedded Systems (SCOPES). Vienna, Austria, pp 81-100.

8. Kästner D and Wilhelm S (2002) Generic Control Flow Reconstruction from Assembly
Code. Proceedings of the Joint Conference on Languages, Compilers and Tools for
Embedded Systems (LCTES), vol. 37, issue 7, pp 46-55.

9. Kruegel C, Robertson W, Valeur F, and Vigna G (2004) Static Disassembly of Obfuscated
Binaries. Proceedings of USENIX Security 2004. San Diego, CA, pp 255-270.

10. Levine B and Schmidt H (2003) Efficient Application Representation for HASTE: Hybrid
Architectures with a Single Executable. Proceedings of the 11th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines. Napa, CA, pp 101-107.

11. Mittal G, Zaretsky D, Tang X, and Banerjee P (2004) Automatic Translation of Software
Binaries onto FPGAs. Proceedings of the 41st Annual Conference on Design Automation.
San Diego, CA, pp 389-394.

12. Mittal G, Zaretsky D, Memik G, and Banerjee P (2005) Automatic Extraction of Function
Bodies from Software Binaries. Proceedings for the IEEE/ACM Asia and South Pacific
Design Automation Conference (ASPDAC). Beijing, China.

13. Muchnick S (1997) Advanced Compiler Design Implementation. Morgan Kaufmann
Publishers, San Francisco, CA.

14. Ramsey N and Fernandez M (1995) New Jersey Machine-Code Toolkit. Proceedings of
the 1995 USENIX Technical Conference. New Orleans, LA, pp 289-302.

15. Ramsey N and Fernandez M (1997) Specifying Representations of Machine Instructions.
ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 19, issue 3.
New York, NY, pp 492-524.

16. Stitt G and Vahid F (2003) Dynamic Hardware/Software Partitioning: A First Approach.
Proceedings of the Design Automation Conference. Anaheim, CA, pp 250-255.

17. Stitt G and Vahid F (2002) Hardware/Software Partitioning of Software Binaries.
Proceedings of the International Conference of Computer Aided Design (ICCAD). Santa
Clara, CA, pp 164-170.

18. Ye Z, Moshovos A, Hauck S, and Banerjee P (2000) CHIMAERA: A High-Performance
Architecture with a Tightly-Coupled Reconfigurable Functional Unit. Proceedings of the
27th International Symposium on Computer Architecture. Vancouver, Canada pp 225-235.

19. Zaretsky D, Mittal G, Tang X, and Banerjee P (2004) Overview of the FREEDOM
Compiler for Mapping DSP Software to FPGAs. Proceedings of the 12th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines. Napa, CA, pp 37-46.

