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Abstract This paper addresses the problem of efficient

intrusion detection for mobile devices via correlating the

user’s location and time data. We developed two statistical

profiling approaches for modeling the normal spatio–tem-

poral behavior of the users: one based on an empirical

cumulative probability measure and the other based on the

Markov properties of trajectories. An anomaly is detected

when the probability of a particular (location, time) evo-

lution matching the normal behavior of a given user

becomes lower than a certain threshold, determined by

controlling the recall rate of the model of the normal user’s

behavior. We used compression techniques to reduce pro-

cessing overhead while maintaining high accuracy. Our

evaluation based on the Reality Mining and Geolife data

sets shows that the proposed system is capable of detecting

a potential intrusion within 15 min and with 94 %

accuracy.

Keywords Mobile security � Trajectory analysis �
Data reduction

1 Introduction

Recent technological advancements caused a huge increase

in the use of mobile devices. Smart phones, notebooks, and

iPads come with many capabilities including email, text

messaging, gaming, web browsing, navigation, and

recording pictures/videos. These devices store a lot of

personal information and, if stolen, loss of control over the

data may be more important than the loss of the smart

mobile device.

Some prior works on mobile device security have

focused on physical aspects and/or access control methods

(e.g., strong passwords, voice recognition [26], or finger-

prints [21]). However, such approaches do not protect the

private data on stolen devices in the post-authentication

state. Today’s smart devices are already equipped with

tools that allow us to obtain vast amount of data about user

behavior, such as application usage logs. In addition, many

mobile devices are equipped with location identification

tools such as Global Positioning System (GPS) receivers,

which can be used to track locations in case of theft.

However, existing works using GPS-features to protect

mobile devices (e.g., GadgetTrak [12] and RecoveryCop

[25]) depend on the owner to report the theft, and it may

take hours before the owner realizes it, at which point

private data may have already been exploited. Even Laptop

Cop [23] requires user intervention to remotely/manually

delete the data on stolen devices.

Our main goal is to develop efficient techniques for

protecting data saved on mobile devices by detecting

anomalous spatio–temporal behavior as compared to the
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regular motion patterns of the owners. A study performed

by González et al. [14] on 100,000 trajectories of anony-

mized mobile phone users whose positions were tracked for

a 6-month period has demonstrated that many individuals

tend to have small sets of locations that they visit fre-

quently (e.g. home, work, school) and tend to take the same

path when moving between locations. Observations Gon-

zález et al. [14] imply that the user’s presence at a certain

time in a certain location is predictable—hence, we can

utilize this to build a user profile which, in turn, can be

used to perform anomaly detection.

In a previous study [34], we used network access pat-

terns and file system activities on laptops to build a

behavioral model based on K-means clustering that per-

mitted attack detection with a latency of 5 min and an

accuracy of 90 %. In a recent work [35], we used users’

location information and trajectory data to build the profile

of smart phone users, and we were able to detect attacks

within 15 min with 81 % accuracy. This paper extends our

results [35] as follows:

1. We present an enhanced user model based on the

previously discussed spatio–temporal information and

trajectory data approach where we assumed a normal

distribution histogram for the user profile. We elim-

inated the low end of the distribution (lower than 10 %

values) during the detection analysis in order to

achieve 96 % detection accuracy.

2. We propose, implement, and compare two data

reduction techniques that enable us to reduce the

memory requirements by &90 % and consequently

reduce the processing time. Those techniques are the

Row-Merge algorithm, which combines adjacent rows

in our data structures and the MDLP algorithm, which

is an adaptation of an existing statistical technique [3]

to our settings.

3. We evaluated our techniques on an additional spatio–

temporal data set—Geolife [36–38].

In summary, this article makes the following main

contributions.

– We develop two statistical profiling approaches and

corresponding representations: one based on empirical

cumulative probability measure and the other based on

the Markov property, in order to model the normal

behavior of a user in a fixed time-window. An anomaly

is detected when the probability of a user window

reflecting a normal behavior falls below a threshold that

is determined by controlling the recall rate of the user’s

normal behavior.

– We present two techniques that reduce user profile

memory requirements while still allowing accurate

attack detection.

– We present a detailed experimental evaluation of the

proposed methodologies over two data sets, quantifying

the benefits of our approaches.

In the rest of this paper, Sect. 2 places the work in the

context of our system architecture and discusses the data

and feature extraction methods. Section 3 presents the

detail of the user profile representation and our anomaly-

based detection schemes. Section 4 presents the methods

used to reduce the size of the user profile data. Section 5

presents a comprehensive experimental evaluation of our

methods. Section 6 describes related work and Sect. 7

concludes the paper and indicates directions for future

work.

2 Preliminaries

We now give an overview of our system architecture,

followed by discussion of the properties of the data and

their use in feature extraction.

Our system for automatic generation of mobility

models and detection of spatio–temporal behavioral

anomalies is based on a client–server architecture utiliz-

ing cloud computing. Its main modules are (1) data col-

lection, (2) feature extraction, (3) user profile/model

building, (4) data reduction, and (5) anomaly detection.

The detection accuracy will be determined by which

anomalous behavior can be distinguished using such

models and considering other users’ models for anomaly

detection; Fig. 1 illustrates the integration of these mod-

ules into our system architecture, which consists of the

following sub-systems:

(ICS)—the information capturing system, which resides

on the mobile device, contains an application to track the

device location, register it periodically, and save it in a new

log file every T minutes. It also contains the feature

extraction module.

(IMS)—the information management system, which

collects the log-files from the ICS and resides on a com-

puter with higher performance and much looser power

consumption constraints than the mobile device. It is

responsible for building mobility models and performing

anomaly detection. Upon building the user model, the IMS,

possibly after the data reduction process, sends the user

model to the mobile device, allowing local detection of

attacks in the absence of wireless connection.

(RMS)—the response management system, which

resides on both the mobile device and the remote server

hosting the IMS. Upon receiving an alert, the RMS iden-

tifies the appropriate action to protect data on the mobile

device, for example, notifying the device owner, locking

the device, or automatically deleting private data.
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Our work focuses on the algorithms and implementa-

tions for the ICS and the IMS modules, since the RMS

consists of user-dependent actions to be executed upon

actual detection of an attack. Again, the rationale is to

maximize the extent to which the mobile devices them-

selves can detect the anomalous spatio–temporal behavior.

While the data structures representing the user motion are

built at the server, in the case of transient network failure,

classification can still be performed on the client using the

most recent transmitted matrix. Clearly, this may affect the

classification accuracy if the network connection is not

available for a prolonged period of time.

2.1 Mobility profiles

We now present our setup for the data collection and the

feature extraction modules.

2.1.1 Data collection

Motion traces are essential for model construction and

anomaly detection. To obtain them, motion monitoring

software needs to be developed to collect information

about each user’s motion patterns—that is, his spatio–

temporal data (along with the other user activities such as

file system access and network activities). These are saved

as trace files, to be sent to the IMS system periodically at

pre-determined intervals.

In our initial system implementation, we relied on the

fact that a number of researchers gathered vast amount of

motion traces and they are publicly available [11, 14, 27,

28, 38]. We note, however, that some of these traces were

collected for reasons different from ours, with different

experimental settings and requirements.

Our desiderata can be summarized by the following

properties, abbreviated as (LCF):

– longevity (L): collected for a long period of time,

continuously;

– consistency (C): collected at regular times (e.g., same

times daily); and

– high frequency (F): to support fast anomaly detection.

After analyzing the different available traces, two data

sets—Reality Mining data set [11] and Geolife [38]—

turned out to provide closest match for the (LCF)

properties.

The Reality Mining data set contains traces collected

over a 9-month period for over 100 users, consisting of

phone calls logs, locations identified by tower IDs and area

IDs, event logs, and device-specific data such as the device

specs. The collection interval ranged from a few seconds to

15 min, with an average of 2.5 min (except when the

mobile device was off) at regular time-instants daily.

The Geolife data set is a collection of GPS trajectories

for 178 users in a period of over 4 years. The data was

recorded with high frequency where 91 % of the trajec-

tories are logged every 1–5 seconds or every 5–10 meters

per point. With closer examination, we noticed that about

50 % of this data set is also compliant with the LCF

properties.

2.1.2 Feature extraction

Reality Mining data set: The traces have over 55 data

features capturing information about the users’ mobility,

activity, communication events, reporting time, and

device-specific information such as the MAC address and

the device maker. Since we focus on the spatio–temporal

and trajectory features, properties like user activity, device-

specific information, user communication style, and user

affiliation information were not considered.

Reality Mining data provides three values to represent a

location: cell tower ID, area ID, and area name. The cell

tower ID gives information associated with user’s loca-

tion—therefore, it is a source of information for the user’s

movement over time. However, the tower ID information

in the Reality Mining data set has no geographical coor-

dinate information, and since each physical location could

be associated with multiple tower IDs, we consider the

tower ID as unreliable feature. Thus, we have selected the

area ID to represent the location information in our study.

Area ID represents the physical location (Library, Office,

etc.) identified either by the information capturing system

Information capturing

system (ICS)
Information management

system (IMS)

Log mobile location

information

Send log files to

information

management system

Analyze data

Build user profile

Perform anomaly

detection
Log data

Information

capturing system
Information

management system

Perform feature

extraction

Reduced user

profile model

OK?

Trigger an alert

Yes No

Response management system (RMS)

Receive the alert Take appropriate

action

Alert

Perform data

reduction

Fig. 1 System architecture
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(ICS) itself or by the user when reporting new locations

such as home, office, restaurants, etc.

Our spatio–temporal analysis techniques depends on

extracting the following features from the Reality Mining

log:

1. (ui)—User ID;

2. (lj)—Location information, represented by the area ID

in the traces; and

3. (tk)—Timestamps of the data records in the trace.

Thus, our input data records are tuples of the form

(ui, lj, tk).

Geolife data set: These traces have a smaller number of

features—only seven of them, including the longitude,

latitude, and altitude information in addition to the date and

time information, and the transportation mode (car, bus,

walking, . . .).

We note that this data set was collected in 30 different

cities in China, United States, Korea, and Europe, and we

focused on the trajectories that were collected in same cities.

Examining the row data directed us to think that most

study users started at the location with 39.0�–41.0�,

115.5�–117.5�) coordinates and then moved to different

areas by bus, train, plane, or boat. This location represents

Beijing (China [31]). We focused on an area of

(138 9 110) square miles [24].

To utilize this data set, the GPS location information

needed to be mapped into an area ID, so that the structure is

similar to the Reality Mining data set representation. The

longitude and latitude information is provided by degrees,

with precision up to (0.000001�). In the GPS system, at 39�

latitude, any change on the longitude to the (±0.0001�) digit

represents &8 m, while at the 116� longitude, the same

change in the altitude represents &7 m. Therefore, in this

data set, we rounded the coordinate numbers to the closest

fourth decimal digit and have each coordinate pair represent

an area ID, again having records/tuples of the form (ui, lj, tk).

3 Data models and anomaly detection

We developed two statistical profiling approaches in order

to model the normal behavior of a user in a fixed window.

Model #1 is based on the empirical cumulative probability

measure of location and time, while Model #2 is based on

the Markov transition property. In this section, we describe

each of them in detail.

3.1 Model #1: Location-in-time probability measure

In Model #1, for each user ui, we extract the location lj and

timestamp tk. For conciseness, we will sometimes neglect

notation for user ID when it is clear from the context.

3.1.1 Building the user profile

Since our goal is to detect attacks by detecting deviation

from the user’s normal behavior, the first step is to

develop a model of a user’s normal behavior based on

the set of locations that the user has visited during the

data collection period. To build the respective user pro-

files for each user in the data set, we divided the data

logs evenly into two consecutive data sets: model_data

(used for model construction) and test_data (used for

evaluation).

Utilizing the model_data, a user profile was constructed

as follows:

1. For each user ui, we extracted the distinct locations and

kept track of them in a list (Li).

2. We built a table of |Li| columns and NT rows to save

the location probability values, where NT stands for

the number of minutes in a day.

3. We calculated the probability Probi(tk, lj) that repre-

sents the fraction of time in the model_data in which

the user ui was at location lj at time tk, where

1 B j B |Li|, and 1 B k B NT. Recall that at any given

time tk, the user ui should be at some unique location lj
from the location list Li

8tk 2 NT ; 9 lj 2 Li where Probiðtk; ljÞ[ 0 ð1Þ

4. We extracted from the user distinct location list Li the

user’s common locations list (UCLi), which consists

of locations that the user has visited more than 1 %

of the time during the data collection period. All

locations that have been visited less than 1 % of the

time will be saved in the Infrequent list (IFi) in order

to be able to delete all related records from the

model_data, and the respective columns from the user

profile.

8lj 2 Li :

if
X

NT

k¼1

Probiðtk; ljÞ� 0:01 then lj 2 UCLi

if
X

NT

k¼1

Probiðtk; ljÞ\0:01 then lj 2 IFi

We selected the value of 1 % based on the study per-

formed by Bayir et al. [4], which reported that indi-

viduals spend 79–85 % of their time in small number

of locations (2–8), and less than 15 % of their time in

large number of locations that they have visited only

less than 1 % of the time. We observed that the frac-

tion |IFi|/|Li| can be significant, and hence, keeping

track only of UCLi is a first step toward reducing the

storage costs.
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5. We eliminated the least visited locations from the

profile table, and obtained a final user profile size of

|UCLi| B |Li| columns and NT rows.

6. We create a discrete probability distribution by

counting visits to the common locations and then

normalizing so they sum to one.

X

NT

k¼1

X

jUCLij

j¼1

LOC-IN-TIMEiðtk; ljÞ ¼ 1 ð2Þ

Figure 2 shows an example user profile represented as a

two-dimensional matrix with (NT 9 |UCLi|) elements.

Rows (tk) correspond to the minutes of the day (12:00

AM, 12:01 AM, . . ., 11:59 PM) and columns (lj)

correspond to locations (l1, l2, l3, l4, l5). Each cell in the

user profile represents the weighted probability LOC-IN-

TIMEi(tk, lj).

For example, this user profile shows that the user has

never been in locations l2, l4, or l5 at 12:00 AM during

the data collection period, while 4 % of the data collec-

tion time he was at location l1. Please note that while

reading the timestamp in the mobility trace, we consider

the hour and the minute values only; therefore, each row

in the user profile represents the minute of the day plus

59 seconds.

3.1.2 Anomaly detection

The anomaly detection process is responsible for receiving

streams of user mobility data, comparing them with the

user profile, and identifying an anomaly (potential theft of

the mobile device).

Our anomaly detection scheme falls into the class of

statistical methods [7] which are based on the assumption

that normal data instances occur in a high probability

measure of the stochastic model while anomalies occur in

the low probability region of the stochastic model. Our

scheme is a nonparametric collective anomaly detection

model, where the probability values are extracted from the

traces and an anomaly represents an unusual sequence of

data.

The first step of our collective anomaly detection

scheme is to randomly select 100 samples ðS1; S2; S3; . . .;

Sm; . . .; S100Þ from the test_data set, for which the time

span is T minutes as shown in Fig. 3.

A random sample Sm of time span T corresponds to a

contiguous sequence of records:

ðui; lj; tkÞ; ðui; lj1 ; tk1Þ; . . .; ðui; ljx ; tkxÞ; . . .; ðui; ljn ; tknÞ satis-

fying these three conditions:

– tk � tk1 ; . . .; � tkx ; . . .; � tkn
– ðtkn � tkÞ� T

– ðtknþ1
� tkÞ[ T

The number of records per sample varies among sam-

ples due to the variation in data collection interval.

For each sample Sm, we define the empirical cumulative

probability PSm of the records in the sequence using the

probability distribution table established during the profile

building phase and based on the model_data representative

of the user ui as follows:

PSm ¼
X

ðk;jÞ2Sm

LOC-IN-TIMEiðtk; ljÞ ð3Þ

As an example, let us consider the sample S1 as shown

in Fig. 4. To calculate the PS1 value, we check the user

profile illustrated in Fig. 2 and we extract the values for

each corresponding record from the representative user

profile. Therefore,

12:00 AM

12:01 AM

12:02 AM

12:03 AM

11:58 PM

11:59 PM

0.04 0 0.011 0 0

0.04 0 0.01 0 0

0.03 0.01 0.02 0 0

0.032 0 0.021 0 0

0.029 0 0.021 0 0

0.04 0 0.019 0 0

12:00 PM 0 0.01 0.01 0 0.03

Fig. 2 User profile for Model #1

S100S1

12:00

AM

S2

t’2t’1 t’n

S3

Trace Sequence

S1

T T T T T

S2 S3 Sm S100

12:01

AM

12:02

AM

12:03

AM

12:04

AM

t1 t2 tn

Sm

1:02

PM

1:02

PM

1:04

PM

1:05

PM

5:30

AM
5:30

AM

5:31

AM
5:33

AM

Fig. 3 Example of dividing the test_data set into 100 test samples
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PS1 ¼ LOC-IN-TIMEið12 : 00AM; l1Þ

þ LOC-IN-TIMEið12 : 01AM; l1Þ

þ LOC-IN-TIMEið12 : 02AM; l1Þ

þ LOC-IN-TIMEið12 : 03AM; l1Þ

þ LOC-IN-TIMEið12 : 04AM; l1Þ

PS1 ¼ 0:04þ 0:04þ 0:03þ 0:032þ 0:038 ¼ 0:18

We calculate the PSm values, essential for defining the

user trust value, for all 100 samples as illustrated (cf.

Fig. 4) similarly.

We are now ready to relate the time span of a sample

derived from the model data to the detection delay:

Definition 1 Detection delay (T) is the shortest length

(measured in time) of the trace generated by the mobile

device that would allow the system to distinguish among

users with an acceptable accuracy rate.

The detection delay T equals the time span of the user

samples discussed above and the incoming data stream

windows need to cover also the same time span T.

Definition 2 Trust value (Ptrust) for Model #1 is the

empirical cumulative probability of samples of span T that

represents a confidence interval of 90 % based on the user

profile. All data stream windows with cumulative proba-

bility less than Ptrust are considered attacks.

Attacks are detected via mismatches between the data

stream windows and the samples conforming to the normal

user behavior, yielding an attack detection delay T. When

the empirical cumulative probability of a specific data

stream window drops below the Trust value (Ptrust), our

system concludes that the mobile device is used by

someone other than its owner, or what we call in this paper,

the device is under attack.

Definition 3 False acceptance rate (FAR) is the per-

centage of the attack data stream windows that are

accepted by the system as normal user behavior.

Definition 4 False rejection rate (FRR) is the percentage

of the user’s normal data stream windows that are identi-

fied by the system as an attack.

We focus on the FAR and FRR values—an ideal system

should have FAR = FRR = 0. Yet errors are possible

since human mobility traces can deviate from the calcu-

lated profile from time to time. Therefore, our goal is to

associate with every user a Ptrust value that strikes a good

balance between the FAR and FRR values.

In the example illustrated in Fig. 4, the smallest PSm

value equals zero; therefore, setting Ptrust also equals to the

smallest PSm value, implies that the system will accept

every incoming stream window and treat as acceptable user

behavior. Subsequently, in this case, we obtain FAR =

100 % and FRR = 0 %.

Figure 5 shows the relationship between precision and

recall as examined in our data set, where (x =)recall =

1 - FRR and (y =)precision = 1 - FAR. We observe that

the high recall, say 0.9, implies a small FRR (0.1) and large

FAR (0.8) values. As we decrease the recall, the FRR

values increase, for example, for recall = 0.7, we get

FRR = 0.3 and correspondingly FAR = 0.6.

Our heuristic starts with the observation that the histo-

gram of the cumulative probabilities for the 100 traces of

each user is close to the histogram for user u92 as shown in

Fig 6. Next, we choose a Ptrust value for each user that

guarantees FRR B 10 % which corresponds to accepting

90 % of the user’s normal behavior based on the trace

samples. If we consider PSm to be a random window

cumulative probability, then the range from the determined

Ptrust value to one forms a 90 % confidence interval for

S1

0.04

12:00

AM
12:01

AM

12:02

AM

12:03

AM

12:04

AM
Time

Location

Probability 0.04 0.03 0.032 0.038

PS1 = 0.04 + 0.04 + 0.03 + 0.032 + 0.038 = 0.18

PS2=0.083

PS3=0.089

PS100=0.098

Sm

0

1:02

PM
1:02

PM

1:04

PM

1:05

PM
Time

Location

Probability 0 0 0

PSm = 0 + 0 + 0 + 0 = 0

Fig. 4 Example of calculating PSm value
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Fig. 5 The relationship between precision and recall
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PSm . Intuitively, for FRR B 10 %, the Ptrust score can

maximally discover behavior anomalies (corresponding the

true attack) with a very small false alarm rate.

After calculating the Ptrusti for each user, the anomaly

detection process can start, formally described byAlgorithm1.

3.2 Model #2: Markov-based transition probability

matrix

Model #2 is a collective anomaly detection scheme that

makes use of them Markov chain stationary property. In our

model, states correspond to tuples of the form (ui, tk, lj). The

Markov property in our context means that the probability of

a user ui moving to location lj0 at time tk does depend on

previous location lj visited by ui in the model_data.

Conceptually, the user’s location–duration trace is

divided into sequences, that is, trajectories. Each trajectory

consists of a start point (SSP), a number of intermediate

points, and an end point SEP, and may differ semantically

due to the notion of stopping time TSTP which is defined as

the time interval during which the user is stationary. Based

on observations from other researchers [32], we use

TSTP = 30 min.

3.2.1 Building user profile

For Model #2, the user profile is a three-dimensional table

LOC-TIME-MOVEi. Each entry in this table, LOC-TIME-

MOVEiðtk; lj0 ; ljÞ, represents the weighted probability of the

user ui moving from location lj to location lj0 at time tk.

Figure 7 represents the state diagram corresponding to a

trace of user sequences starting at location l1 at time t1. The

nodes stand for the identified (locations,time) tuples while

the edges represent moves from a location to another

weighted by the probability of the transition. Note that for

conciseness, we did not store the time information in the

nodes of the state graph, but are showing it in the rightmost

column.

This state graph illustrates that if the user ui was at

location l1 at time t1, there is 50 % probability that the user

will stay at the same location l1 at time t2, 20 % probability

to go to location l2, 25 % probability to go to location l3,

and 5 % probability to go to location l4, while the user has

never travelled to locations l5 or l6 from location l1 at time

t2 during the data collection period. At time t3, the user who

ended up at location l1 at time t2 has 70 % probability to

Cum

0
0

5

10

15

20

25

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

ulative Probability Values (PSm)

N
u

m
b

e
r

o
f
S

a
m

p
le

s

Fig. 6 The histogram of cumulative probability for user u92

70%

20%
15%

20% 25% 5%

95%
5%

50%

30%

65%

100%

t1

t2

t3

tn

0% 0%

Fig. 7 State graph representing the user sequences when the user

starts at location l1 at time t1
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stay at location l1, and 30 % probability to go to location l3,

and so on.

To build the user profile utilizing the three-dimensional

data structure, we perform the following tasks:

1. Read the model_data set.

2. Build a list of the user’s distinct locations (Li).

3. Build and initialize a three-dimensional matrix of

size (NT 9 |Li| 9 |Li|) where each 2-D plane

represents a different starting location for a

trajectory.

4. Identify the first record in the data set and keep track

of its timestamp t1 and location l1. This location

becomes the Starting Point, SSP, for this trajectory.

Increase the frequency value and calculate the

probability value Probi(t1, l1, l1).

5. Read the time stamp and the location of the next

record t2,

– If t2 - t1 C TSTP, then this record will be

considered a new SSP for a new trajectory, and

the previous point is an SEP for the previous

trajectory. Go to Step 5.

– If t2 - t1\ TSTP, we increase the frequency

value by one and calculate the probability value

Probi(t2, l2, l1).

6. We repeat the task #4 until we reach the end of the

data set.

7. Create the UCLi list by eliminating all locations that

the user visited less than 1 % of the time, (same

reason as indicated in Sect. 3.1).

8. Create the new user profile with the NT rows, |UCLi|

columns, and |UCLi| depth.

9. Replace the probability value, Probiðtk; lj0 ; ljÞ, in each

cell in the new user profile with the weighted

probability value, LOC-TIME-MOVEiðtk; lj0 ; ljÞ.

10. The final user profile will have the sum of each row in

each starting location matrix equals to one.

8lj0 2 UCLi and 8k 2 NT

X

UCLi

j¼1

LOC-TIME-MOVEiðtk; lj0 ; ljÞ ¼ 1
ð4Þ

Upon completing this process for all the records in

the model_data set, the user profile will be produced

as a three-dimensional matrix as shown in Fig. 8. The

rows represent the minutes of the day where each

minute is a row, the columns represent the locations

from the UCLi list, and the depth represents the

starting locations from the UCLi.

For example, if we consider the user trajectory represented

in the Fig. 7, the associated user profile would be the one

shown in Fig. 8. In this example, the user starts at location l1 at

time t1. The cell (t2, l1, l1) indicates the weighted probability

value for the user to be at location l1 at time t2, when he was at

location l1 in the previous record, LOC-TIME-MOVE-

i(t2, l1, l1) = 50 %, and the cell (t2, l2, l1) indicates the

probability value for the user goes to location l2 at time t2,

when hewas at location l1 in the previous record, LOC-TIME-

MOVEi(t2, l2, l1) = 20 %, and so on.

3.2.2 Anomaly detection

The anomaly detection process for Model #2 follows the

same principle as in Model #1 anomaly detection process,
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where we focus on the evaluation of P0
trust; FAR

0, and FRR0

to identify the system ability to detect attack. The calcu-

lation for FAR0 and FRR0 is the same as explained in Sect.

3.1.2, but the computation of trust values P0
trust for each

user is different.

Definition 5 The trust value ðP0
trustÞ for Model #2 is the

trace joint probability value that represents a confidence

interval of 90 % based on the user profile. All traces with

probability value less than P0
trust are considered attacks.

For Model #2 and since we capture the user movement,

where the probability of the user to be in any location at

any time is highly dependent on the previous location at the

previous point of time, we calculate the Markov sequence

probability value for each trace sample (Sm) rather than the

cumulative probability value as follows:

P0
Sm

¼
Y

ðk;j;j0Þ2Sm

LOC-TIME-MOVEiðtk; lj0 ; ljÞ: ð5Þ

The joint probability value is the product of the probabilities

of all records in the trace sample Sm, as indicated in the LOC-

TIME-MOVE table. Equation 5 shows that if any record in

the sequence has a probability of zero, which corresponds to

the fact that the user has never moved between these two

locations at this time before, the whole trace will be con-

sidered an attack because the P0
Sm

¼ 0. To reduce the penalty

for deviation from the normal path, we introduce the concept

of Trace Threat Level (TL), which represents the percentage

of the records in the trace that has no representation in the

user profile. Thus, if LOC-TIME-MOVEiðtk; lj0 ; ljÞ ¼ 0, we

eliminate this value from the calculation of the trace joint

probability value and increase the Threat Level value by one.

We use a threat level threshold of TLtrust = 10 % of the total

records in the trace, based on empirical analysis.

As an example, Fig. 9 shows two paths; the solid curve

represents the normal path in the user’s profile and the

dashed curve represents the currently detected trajectory. In

this example, the user profile indicates that when the

starting point at time t1 is location l2, the normal path of

duration T is l2 ! l3 ! l4 ! l5 ! l6 ! l7. In contrast, the

captured user trajectory that starts at location l2 at time t1
consists of the sequence l2 ! l1 ! l2 ! l3 ! l4 !
l5 ! l6. To determine whether this is an expected or

anomalous user behavior, we compare the joint probability

of this path with the profile of the particular user. The

calculated value should be equal to or greater than the trust

value for that user.

To calculate the captured trajectory joint probability P0
SWm

as indicated in Eq. 5, we first identify the starting point

SSP = lj and the time tk. (Please note that we use P0
SWm

to

indicate trajectory probability which is used to perform the

anomaly detection process, and P0
Sm

to refer to sample

probability which is used for the calculation of P0
trust value).

Then, we check whether lj 2 UCLi or not. If not, we increase

the threat level TL value by one. Otherwise, we identify this

location, lj as the starting location, and check the value LOC-

TIME-MOVEi(tk, lj, lj) to calculate the trace joint probability

value P0
SWm

. Next step is to identify the next record, and read

the data lj0 and tk0 from that record. If lj0 2 UCLi, we obtain

the weighted probability value LOC-TIME-MOVEiðtk; lj0 ; ljÞ.

If not, we increase the TL value again. This process is

repeated for the entire user trace and, upon completion, we

check whether TL�TLtrust or not. If it is greater than TLtrust,

this trajectory is judged to have been generated by someone

other than the user, that is, an attacker. If not, we subse-

quently check the P0
SWm

value. If P0
SWm

�P0
trusti

, the trajectory

is judged to belong to the user; otherwise, it is treated as a

trajectory generated by an attacker.

4 Data reduction

We now aim to further improve the efficiency by reducing

the size of the user model, with low impact on the accuracy

of the attack detection. The reduction benefits are twofold:

1. reduce the amount of memory occupied by the user

model, and

2. reduce the CPU time required to perform the detection

process and therefore enhance the system performance.

The Reality Mining data set consists of 93 users with

total number of distinct locations is in the range 3–100, and

average of 28 locations. While the Geolife data set has 65

users with total number of distinct locations 134–1,200.

For these data sets, the user profile requires up to

(1,440 9 1,200) & 106 memory locations for Model #1

Location

T minutes

One minute

T minutes

Fig. 9 User path analysis
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and up to (1,440 9 1,200 9 1,200) & 109 memory loca-

tions for Model #2. We propose and analyze two different

solutions to reduce the size of the models’ representations:

1. The first is called the Row-Merge algorithm, where the

rows in the user model table LOC-IN-TIMEi are

combined if they fit this condition: For each tk 2 NT :

8lj 2 UCLi ðCount LOC-IN-TIMEiðtk; ljÞ 6¼ 0Þ� ThV ;

ð6Þ

where ThV is a threshold value that guarantees no detec-

tion degradation occurs due to the Row-Merge process.

2. The second algorithm is based on the MDLP (Minimal

Description Length Principle) [3, 18].

We now present in detail the algorithms along with their

complexity analysis.

4.1 Row-Merge algorithm

As discussed in Sect. 3.1, three properties identify a profile:

– At any minute tk, user ui can exist in any location lj
identified in the Li list.

– At any minute tk, each user ui has to be located in one of

the locations lj that are identified in the distinct locations

list Li. Yet, by considering theUCLi list rather than the Li
list, our user profile will have certain time of the day that

is not accounted for therefore the new rule is as follows:

8lj 2 IFi; 9 tk where Probiðtk; ljÞ ¼ 0:

– Based on Model #1, the sum of all the probability

values in every user profile is equal to 1:

8ui;
X

NT

k

X

jUCLij

j

LOC-IN-TIMEiðtk; ljÞ ¼ 1:

Observation: Although there is no rule preventing a user

from being at any place at any time, the patterns indicated

different findings. The user profile shows that at a certain

time of the day (late night to early morning for example),

some users are always at one place, and the probability

value for the rest of locations equals zero.

Figure 10 shows the distribution of the time the user

spends in each location every day, and it indicates that each

user has only few locations that he spends most of the time

at. For instance, although user u12 has 13 distinct locations

in his profile, there are only three locations u12 visits every

day (l2, l8, l9). Similarly, user u37 has 51 distinct locations

in UCL37, while he spends most of his time in seven

locations (l1, l6, l9, l19, l25, l28, l50).

Based on the above observation, we conclude that if we

consolidated the time periods where a given user has been

in few locations (less than ThV) into one row, we could

significantly reduce the size of the matrix representing that

user’s profile. The main idea is to consolidate consecutive

rows where the total number of LOC-IN-TIMEi(tk,lj) = 0 in

that row is less than ThV. The Row-Merge approach is

formalized by Algorithm 2.

The data input is the user profile consisting of NT rows

and |UCLi| columns, while the output is a matrix with
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reduced number of rows RN and |UCLi| columns. The first

step is to read the user profile. For each row, we count the

total number of cells that are greater than zero as illustrated

in Line 11. If the count is less than the threshold value ThV,

then this row will be merged with the previous one in the

LOC-IN-TIMEi table as shown in Line 13. If the count of

probability values that are greater than zero is greater than

ThV, we keep this row and update the Time_Indexi as

shown in Lines 15–21. Upon completion, we initialize the

Reduced_Model_Data(RMDi) with the new number of

rows as shown in Line 24 and save the new user model in

this matrix as illustrated in Lines 26–30. The complexity of

this algorithm is O(NT 9 |UCLi|).

As an example, assume that Fig. 11 represents a user

profile for user ui with eight distinct locations l1; l2; . . .; l8.

The size of this user profile is 1,440 9 8 = 11,520

numeric values. In this example, we illustrate the Row-

Merge process for a threshold value ThV = 1 which indi-

cates that all rows in the user profile that have at most one

probability value that is greater than zero will be merged

with the previous row. Figure 12 details this process.

The total reduction in the matrix size is equal to the total

eliminated rows (1,440 - Q) multiplied by 8, the total

number of distinct location.

4.2 MDLP algorithm

In this section, we aim to compress the size of the user model

by applying the Minimum Description Length Principle

(MDLP), based on the following insight: any regularity in

the data can be used to compress the data, that is, to describe

it using fewer symbols than the number of symbols needed to

describe the data literally. The more regularities there are,

the more the data can be compressed [15].

Observation: The challenge in this approach is to identify

regularity in our user model that is not completely regular;

there is no single subset LOC-IN-TIME00
i in the user model

LOC-IN-TIMEi that we could identify as a hypothesis to

regenerate the user model. In fact, it is acceptable to assume

that our user model could consist of several subsets

LOC-IN-TIME00
i1
; LOC-IN-TIME00

i2
; . . .; LOC-IN-TIME00

ir
that

combined could be utilized to regenerate the user model

LOC-IN-TIMEi and therefore are used for model compres-

sion. On the other hand, we understand that there will always

be some regular data sets in our usermodel which wewill not

be able to compress.

The Algorithm: The single user model for ui is LOC-IN-

TIMEi, where each row corresponds to a minute in the day
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tk, and each column corresponds a user distinct location lj,

and each entry LOC-IN-TIMEi(tk, lj) records the probability

for the given user ui to visit the location lj at time tk. Given

this, we focus on the temporal regularity in this data set in

order to perform our user model compression. We would

like to find a function Hi that partitions the time into

consecutive intervals, based on user model matrix, and

minimizes the loss when combining/merging two rows.

To facilitate our discussion, we assume that we maintain

the row sum (Ri(k)) and the time frequency (Ti(k)), for each

row k in the user profile LOC-IN-TIMEi(tk, lj), where

RiðkÞ ¼
X

jUCLij

j¼1

LOC-IN-TIMEiðtk; ljÞ ð7Þ

and 8 records 2 model data:

TiðkÞ ¼ Record Count where ðtk�1Þ\tk �ðtkþ1Þ ð8Þ

The time frequency represents the number of records in the

data log that represents each time interval, for one minute

intervals.

Then, the function Hi(k) for each row in the user ui
profile is calculated as

Rediðtk; ljÞ ¼
LOC�IN�TIMEiðtk; ljÞ

RiðkÞ
and

HiðkÞ ¼ �
X

jUCLij

j¼1

Rediðtk; ljÞ
� �

� log Rediðtk; ljÞ
� �

:

ð9Þ

Clearly, this resembles the well-known entropy—a

common measure for the information loss [15]. Combining

two consecutive rows k and k ? 1 and merge them into one

interval k, k ? 1, the cell value for each cell in the model is

LOC-IN-TIME0
iðtk; ljÞ ¼ LOC-IN-TIMEiðtk; ljÞ

þ LOC-IN-TIMEiðtkþ1; ljÞ

and R0
iðkÞ ¼ RiðkÞ þ Riðk þ 1Þ; therefore, the function

Hi(k, k ? 1) is calculated as

Hiðk; k þ 1Þ ¼ �
X

jUCLij

j¼1

Rediðtk; ljÞ
� �

log Rediðtk; ljÞ
� �

: ð10Þ

The information loss is measured by the difference

between the entropy when we combine two rows into one

and the combined weighted entropy sum from the two rows

TiðkÞ�HiðkÞþTiðkþ 1Þ�Hiðkþ 1Þ� ðTiðkÞþTiðkþ 1ÞÞ

�Hiðk;kþ 1Þþ ðjUCLij � 1Þ� logDS:

where (DS = |model_data| - RIFi) as calculated in Sect.

3.1.1.

Assuming that the matrix has NT rows and |UCLi| col-

umns, the complexity of the matrix model can be written as

(|UCLi| - 1) 9 logDS.

Given this, we can apply the MDLP (Minimal

Description Length Principle) which is the sum of the

model complexity and the overall entropy of the matrix

X

NT

k¼1

½HiðkÞ � TiðkÞ� þ ½ðjUCLij � 1Þ � logDS�: ð11Þ

A single greedy algorithm can simply choose the two

consecutive rows which can produce the smallest

information loss and then group them into one row. This

procedure can be performed until the overall MDLP

measure cannot decrease.

The MDLP algorithm has O(NT 9 |UCLi|) complexity.

Algorithm 3 formalizes this approach.

As an example, assume that Fig. 10 represents a user

profile for user ui with eight distinct locations 11; l2; . . .; 88.
The size of this user profile is 1,440 9 8 = 11,520

numeric values. In this example, we illustrate the MDLP

process, and Fig. 13 details this process as follows.
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– First, we initialize a Time_Indexi matrix.

– We calculate the Hi(k) value for each row k in the

database and save it in the Hmatrix.

– We run the MDLP algorithm against this user profile

starting with the first two rows t1 and t2. In this

example, Hi(1) = 0, Hi(2) = 1 and Hi(1,2) = 0.93.

– We calculate the information loss value:

Tið1Þ � Hið1Þ þ Tið2Þ � Hið2Þ � ðTið1Þ þ Tið2ÞÞ

� Hið1; 2Þ þ ½ðjUCLij � 1Þ � logDS�:

In this case, the information loss value is[ 0, which

indicates that we can combine these two rows together,

and subsequently the first row in the reduced matrix

will be

LOC-IN-TIMEiðt1; ljÞ ¼ LOC-IN-TIMEiðt1; ljÞ

þ LOC-IN-TIMEiðt2; ljÞ:

– We update both Hmatrix to have the Hi(1) = Hi(1,2),

the time frequency to have Ti(1) = Ti(1) ? Ti(2),

and the Time_Indexi matrix to have the first cell has

the value t2 to indicate that the first row in the

reduced user profile represents the minutes t1 and t2
of the day.

– We advance to the third row and examine the Hmatrix

values for the rows t1 and t3. In this case, Hi(1) = 0.93

and Hi(3) = 0 while Hi(1,3) = 0.81, and therefore,

Tið1Þ � Hið1Þ þ Tið3Þ � Hið3Þ � ðTið1Þ þ Tið3ÞÞ

� Hið1; 3Þ þ ½ðjUCLij � 1Þ � logDS�:

In this case, the value is less than zero, and we cannot

combine the rows.

– We repeat this process and scan the user profile row by

row until we achieve a matrix with Q0 � 8 values and a

Time_Indexi matrix with Q0 values.

The total reduction in the matrix size is equal to the total

eliminated rows multiplied by the total number of distinct

locations ð1; 440� Q0Þ � 8.

5 Experimental results

This section has two main parts. (1) We provide a

detailed evaluation for our attack detection algorithms.

We test our ability to build user profiles based on spa-

tio–temporal traces and to detect anomalous behavior

based on these profiles. We examine and compare the

test results for both methods explained in Sect. 2.1.2. (2)

We evaluate the effects of each data reduction algorithm

in terms of reducing the user profile size and illustrate

that this reduction has small impact on the detection

accuracy.

5.1 Anomaly detection results

As discussed in Sect. 2.1.2, we used the Reality Mining

[11] and Geolife mobility [38] traces for this evaluation.

Each user log was divided into two equal contiguous

data sets: training data set (model_data) and testing data set

(test_data) as described in Sect. 3.1. For each user, we

randomly selected 100 samples from the test_data log with

T duration. We repeated each test for four different T val-

ues (5, 15, 30, and 60 min). The T value is the detection

delay.

5.1.1 Results for Model #1

For each user, we constructed models and calculated trust

values Ptrust following the steps described in Sect. 3.1.

Attacker behavior traces are not presently available.

However, traces for different users are available.

In our previous study [35], we explained the detailed

results based on the Reality Mining data set where we

demonstrated that the Model #1 of our system is capable of

detecting an attack with a 94.4 % accuracy rate within

15 min as shown in Fig. 14. This figure indicates that in case

of theft, our system has 94.4 % chance of notifying the

device owner of the theft within 15 min and 92.0 % chance

of notifying the device owner of the theft within 5 min.

In this study, we evaluate the system’s ability to perform

attack detection based on the Geolife data set. In Sect. 3,

we have indicated that we have limited our user locations

to an area of (138 9 110) miles, and we mapped each

(7 9 8) meter to an area ID based on a (±0.0001�)

change in each coordinate. Based on this information, and

after eliminating all the records that do not fit within the

Beijing area, we had a total 65 users with 100–1,200 dis-

tinct locations. The average was 780 distinct locations. We

mapped these locations into area IDs (1–1,200).

Looking closer at the available location data, we notice

a big difference among users and their trajectories.

Figure 15 shows four different randomly selected users

with their respective location histograms. This figure

indicates that individuals tend not to travel very far, and

when they do, they do not stay long. Although few users

share some area IDs, the percentage of them visiting these

areas is different, and the time of the day for these visits is

different too. We reported similar observations for the

Reality Mining data set [35].

Our test results with regard to accuracy exhibit also

similar patterns. We were able to achieve a 95.6 % accu-

racy detection rate when T = 5 min and 93.8 % accuracy

rate when T = 15 min as shown in Fig. 16. We notice that

the detection accuracy for the 5-min delay is better in the

Geolife than the 15-min detection delay. We can correlate

this to the fact that this data set did not have many long
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time sequences to use as a test sequence, which resulted in

a decline in the detection accuracy associated with the

longer delay. On the other hand, the granularity of the

location information is finer for the Geolife than the Reality

Mining data set, which also contributes to a higher detec-

tion rate for smaller values of T.

5.1.2 Results of Model #2

We followed the same steps described in [35] to calculate

the FAR0 values based on Model # 2 user profile and

probability analysis. We demonstrated in that study based

on the Reality Mining data set that Model #2 is capable of
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detecting an attack with a 96.13 % accuracy rate within

15 min as shown in Fig. 17.

The Geolife data set allowed high detection accuracy

too as shown in Fig. 18. The detection accuracy range

was 96.0–90.5 %. Lower P0
trust values are associated with

the longer traces, which indicates that it is uncommon

for most users to make large day-to-day changes in

motion patterns affecting short intervals within a trace.

However, longer intervals are more likely to change

from day to day.

5.1.3 Model comparison

As illustrated in Figs. 14, 16, 17, and 18, the average

accuracy is slightly better for Model #2 than for Model #1

for small sample intervals (less than 30 min)—but the

standard deviation is significantly better in the Reality

Mining data set, while the improvement is slightly there for

the ‘‘Geolife’’ data set.

However, the cost of obtaining this small improvement in

accuracy (B2 %) for T = 15 min is expensive, consider-

ing the required memory to store the user profile: (NT 9

|UCLi|) for Model #1, and (NT 9 |UCLi| 9 |UCLi|) for

Model #2, along with the respective time complexity for

anomaly detection O(TS 9 NT 9 |UCLi|) for Model #1

and O(TS 9 NT 9 |UCLi| 9 |UCLi|) for Model #2.

Therefore, our recommendation for this data set is to use

Model #1 approach to achieve a high detection accuracywith

lower memory requirements.

The simplicity of the resulting user models resulted in

an efficient anomaly detection process supporting an

average detection time 0.02 seconds, as shown in Fig. 19.

A comparison between our results and those of existing

systems is given in Table 1.
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5.2 Reduction results

In this section, we evaluate the efficiency of the Matrix

Reduction methods based on running both the Row-Merge

algorithm and the MDLP algorithm. Our evaluation is

based on the user profiles built in the previous sections.

Efficiency evaluation includes

1. reduction rate,

2. detection accuracy in relation to the reduced profile,

3. algorithm complexity, and

4. elapsed time required to perform the reduction process.

5.2.1 Row-Merge algorithm

Processing the Row-Merge matrix reduction algorithm for

all the users’ profiles in both data sets when ThV = 1 has

shown an inconsistent reduction rate among the users.

Figure 20 shows these results based on the Reality Mining

data set. The reduction rate is high for the profiles with few

distinct locations (\5), while it is low for the user profiles

with more than five distinct locations. Yet, after performing

the detection attack as described in Sect. 3.1, we noticed

that the detection accuracy has not been impacted nega-

tively, which is not surprising based on the analysis pro-

vided in the example in Sect. 4.1. Figure 21 illustrates the

detection accuracy for all users based on the reduced user

profile data when ThV = 1.

To further improve the reduction rate, we decided to

explore the possibility of consolidating the rows that rep-

resent tk where ThV[ 1. For each user ui, we examined

several values for ThV ¼ 1; 2; 3; 4; 5; . . .; = jUCLij
3

. The

changes of the ThV value have improved the reduction rate

and did not have a nominal negative impact on the detec-

tion accuracy. ThV ¼ jUCLij
3

produced the best results,

where we have seen consistent reduction rate and high

detection accuracy.

5.2.2 MDLP algorithm

Processing the MDLP matrix reduction algorithm for the

same users’ profiles has shown a consistent reduction

rate among all users as shown in Fig. 22 based on the

Reality Mining data set. The total number of distinct

locations had no effect on the reduction rate. In addition,

Fig. 19 Anomaly detection elapsed time according to sample interval

Table 1 Comparison with existing theft detection systems

Our

system

Gadget-

Trak [12]

RecoveryCop

[25]

LaptopCop

[23]

Detection

latency

15 min N/A N/A N/A

Accuracy 96.13 % N/A N/A N/A

Data

protection

Yes No No Yes

User

intervention

No Yes Yes Yes
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the detection accuracy rate has not been impacted neg-

atively (less than 1 % decrease in detection accuracy) as

shown in Fig. 23.

We notice that the reduction rate for the MDLP algo-

rithm is in the range (67.6–99.5 %) with an average of

87.6 %. This reduction came at a cost of only 1 % reduc-

tion in detection accuracy.

As we have indicated previously, these results are

expected since users spend most of their times in a few

locations, and they repeatedly visit these locations.

5.2.3 Row-Merge algorithm versus MDLP algorithm

In the previous subsections, we have illustrated that these

two algorithms provide comparable data reduction per-

centages, in addition to a comparable detection accuracy

rates as shown in Fig. 24. This figure shows the reduc-

tion rate and the detection accuracy based on the

reduction algorithms for both the Reality Mining data set

and the Geolife data set. We notice that the Row-Merge

algorithm reduction rate is related to the ThV value, for

example, when ThV = 1 the reduction rate average was

as low as 34.5 % for Reality Mining data set, while it

was 0.069 % for the Geolife data set. This rate has

improved with the increase of the ThV value where the

reduction rate reached the 91 % for the Reality Mining

data set, and 93 % for the Geolife data set when

ThV ¼ jUCLij
3

� �

. The main reason for this difference in

the reduction rate between the two data sets is the

number of distinct locations associated with each user;

thus, we achieved a comparable results when we used

ThV ¼ jUCLij
3

� �

. Similar results were achieved by the

MDLP, which performed very well on both data sets.

Regardless of the reduction rate, the detection accuracy

rate was not affected significantly after data reduction for

both algorithms and data sets. Therefore, it is hard to

compare these two algorithms based on the reduction rate

and the detection accuracy only.

Upon examining the algorithm time complexity, we

noticed that both algorithms have O(NT 9 |UCLi|)

complexity. However, the MDLP algorithm has higher

overhead because it accesses the user model several

times for every reduction process; the first time to cal-

culate the H function values, the second time to perform

a first round of reduction, the third time to perform a

second round, and if needed, forth and fifth time. On the

other hand, the Row-Merge algorithm goes over the user

model only one time and performs the reduction. In

addition, the Row-Merge algorithm performs a simple

comparison at every row with for the total number of

nonzero values in the row with a pre-defined value ThV,

and based on the results, the algorithm either merges the

rows for reduction or skip to the next row. This simple

logic makes the Row-Merge algorithm more efficient

than the MDLP algorithm that required double the time

to obtain the same reduction rate, and similar accuracy

as shown in Fig. 25.
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Fig. 23 The detection accuracy based on the MDLP reduction

algorithm
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6 Related work

Spatio–temporal data management and efficient query

processing techniques have been the topics of intensive

research in the field of Moving Objects Databases [16]. In

particular, trajectory analysis and similarity detection have

yielded numerous research results in the recent years [9,

13, 22]. Several results from this arena have goals similar

to ours. For example, Mouza and Rigaux [10] propose

regular expression-based algorithms for detecting mobility

patterns. However, those patterns do not explicitly model

the temporal dimension of the motion, that is, the focus is

more on routes than trajectories.

In order to improve application awareness during tra-

jectory data analysis, Alvares et al. [2] proposed adding

semantic information during trajectory preprocessing.

Hung et al. [20] proposed the complementary approach of

using a probabilistic suffix tree to measure separation

among users trajectories. Xie et al. [32] addressed the

problem of predicting social activities based on users’

trajectories. In addition, Trestian et al. [30] used associa-

tion rule mining to investigate the relationships between

geographic locations and user habits for mobile devices.

Detecting malware in mobile devices usage is a topic

that has been tackled via various formalism. Using tem-

poral logic of causal knowledge as language, malicious

behavior signatures were proposed by Bose et al. [5] for

mobile devices running Symbian OS. A complementary

approach based on diffusion over bipartite graphs was

presented by Alpcan et al. [1], and another approach that

studies Bayesian networks, RBF, KNN, and random forest

is presented by Damopoulos et al. [8]. Fraud detection

based on usage behavior has also been addressed [6], where

the underlying classifier is based on artificial neural net-

works. While in our earlier work [34], we attempted to use

file-access patterns to detect malicious use; in this work,

our focus was on detecting deviations from individual

spatio–temporal patterns.

A cloud-based framework to detect intrusions and to

provide fast response for the mobile device is introduced

by Houmansadr et al. [19]. Their goal is complementary to

our approach of enabling the mobile devices themselves to

detect a potential theft by comparing user’s trajectories.

Sun et al. [29] proposed mobile intrusion detection

based on the Lempel–Ziv compression algorithm and

Markov Chains. The proposed technique used three-level

Markov Chains and did not consider the association

between time of the day and the location. Their ability to

detect attack using the proposed technique is limited to the

times at which the user is making phone calls and moving

faster than 60 miles per hour. Yan et al. [33] improved on

this work, yet the delay in detecting attack was 24 h, since

the traces were obtained once a day, with a sampling period

of 30 min. Our technique has an attack detection latency of

15 min. Hall et al. [17] proposed an intrusion detection

method based on mobility traces. Their focus was on public

transportation traces in which the paths are pre-defined.

7 Concluding remarks

We presented an approach for detecting anomalous use of

mobile devices. Our system uses spatio–temporal mobility

data to build models that have high anomaly detection

accuracy. Combining the spatio–temporal model (for users

with few locations) and trajectory-based model (for users

with many locations) allowed an average attack detection

rate of 94.48 % for Model #1 and 96.13 % for Model #2,

with a detection latency of 15 min. To further improve the

efficiency of this system, we applied a couple of data

reduction algorithms (Row-Merge, MDLP), which enabled

us to obtain high reduction rate while still capable of

detecting attacks with a 94 % accuracy.

One possible extension is to enrich the model by

allowing nonzero probabilities to capture the cases of the

owner visiting new locations. In addition, we would like to

investigate the quality of accuracy, along with other trade-

offs that may be involved when our approach is dealing

with prolonged disconnections from a server. We also plan

to expand this study to incorporate/couple different context

dimensions (e.g., call-patterns and application logs) in

order to improve the detection accuracy.
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