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Abstract. Advances in embedded systems and low-cost gas
sensors are enabling a new wave of low-cost air quality mon-
itoring tools. Our team has been engaged in the develop-
ment of low-cost, wearable, air quality monitors (M-Pods)
using the Arduino platform. These M-Pods house two types
of sensors – commercially available metal oxide semicon-
ductor (MOx) sensors used to measure CO, O3, NO2, and
total VOCs, and NDIR sensors used to measure CO2. The
MOx sensors are low in cost and show high sensitivity near
ambient levels; however they display non-linear output sig-
nals and have cross-sensitivity effects. Thus, a quantification
system was developed to convert the MOx sensor signals into
concentrations.

We conducted two types of validation studies – first, de-
ployments at a regulatory monitoring station in Denver, Col-
orado, and second, a user study. In the two deployments
(at the regulatory monitoring station), M-Pod concentrations
were determined using collocation calibrations and labora-
tory calibration techniques. M-Pods were placed near reg-
ulatory monitors to derive calibration function coefficients
using the regulatory monitors as the standard. The form of
the calibration function was derived based on laboratory ex-
periments. We discuss various techniques used to estimate
measurement uncertainties.

The deployments revealed that collocation calibrations
provide more accurate concentration estimates than labo-
ratory calibrations. During collocation calibrations, median
standard errors ranged between 4.0–6.1 ppb for O3, 6.4–
8.4 ppb for NO2, 0.28–0.44 ppm for CO, and 16.8 ppm for
CO2. Median signal to noise (S/ N) ratios for the M-Pod sen-
sors were higher than the regulatory instruments: for NO2,
3.6 compared to 23.4; for O3, 1.4 compared to 1.6; for CO,
1.1 compared to 10.0; and for CO2, 42.2 compared to 300–
500. By contrast, lab calibrations added bias and made it dif-
ficult to cover the necessary range of environmental condi-
tions to obtain a good calibration.

A separate user study was also conducted to assess uncer-
tainty estimates and sensor variability. In this study, 9 M-
Pods were calibrated via collocation multiple times over
4 weeks, and sensor drift was analyzed, with the result be-
ing a calibration function that included baseline drift. Three
pairs of M-Pods were deployed, while users individually car-
ried the other three.

The user study suggested that inter-M-Pod variability be-
tween paired units was on the same order as calibration un-
certainty; however, it is difficult to make conclusions about
the actual personal exposure levels due to the level of user
engagement. The user study provided real-world sensor drift
data, showing limited CO drift (under−0.05 ppm day−1),
and higher for O3 (−2.6 to 2.0 ppb day−1), NO2 (−1.56 to
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0.51 ppb day−1), and CO2 (−4.2 to 3.1 ppm day−1). Overall,
the user study confirmed the utility of the M-Pod as a low-
cost tool to assess personal exposure.

1 Introduction

1.1 Background and motivation

Health effects such as asthma, cardio-pulmonary morbidity,
cancer, and all-cause mortality are directly related to personal
exposure of air pollutants (EPA ISA Health Criteria, 2010,
2013a, b). To comply with the U.S. Clean Air Act, state mon-
itoring agencies take ongoing measurements in centralized
locations that are intended to represent the conditions nor-
mally experienced by the majority of the population. Because
these measurements require sophisticated, costly, and power-
intensive equipment, they can only be taken at a limited
number of sites. Depending on the pollutant, individual, and
location, this can lead to misleading personal exposure as-
sessments (HEI, 2010). Low-cost, portable, and autonomous
sensors have the potential to take equivalent measurements
while more effectively capturing spatial variability and per-
sonal exposure. Thus, we set out to survey such sensors, an-
alyze their performance, and understand the feasibility of us-
ing them. We describe the M-Pod hardware and quantifica-
tion system, and personal exposure results in greater detail
below.

1.2 Low-cost portable air pollution measurement
techniques

Quantitative measurements of pollutant concentrations gen-
erally require techniques to be sensitive at ambient concen-
trations and unique to that particular compound (in other
words, free from interference from other pollutants). Nu-
merous techniques currently exist (including several EPA ap-
proved methods); rather than provide an exhaustive report of
all available measurement techniques, we provide brief de-
scriptions of the various techniques, along with their mea-
surements, costs, and potential.

1.2.1 Carbon monoxide

Federal Reference Method (FRM) measurements of CO
are made using infrared absorption instruments, which use
∼ 200 W power, cost∼ USD 15 000–20 000, and require fre-
quent calibrations and quality control checks (EPA Quality
Assurance Handbook Vol. II, 2013). By comparison, metal
oxide semiconductor (MOx) sensors often cost∼ USD 5–15
and require less than 1 W of power. One example of this
kind of device is the SGX 5525 sensor used for CO mea-
surements that uses approximately∼ 80 mW power. MOx
sensors have fast responses, low detection limits, and require
simple measurement circuitry. However, they can have high

cross-sensitivities to other reducing gases, and can be poi-
soned by certain gases or high doses of target gases.

The typical reducing gas MOx sensor uses a heated tin-
oxide n type semi-conductor surface, on which oxygen can
react with reducing gases, thus freeing electrons in the semi-
conductor. This lowers the electrical resistance proportional
to the concentration of the reducing gas (Moseley, 1997).
These sensors suffer from cross-sensitivities to temperature,
humidity, and other pollutants. Korotcenkov (2007) provides
a comprehensive review of MOx materials and their charac-
teristics for gas sensing, while Fine et al. (2010) and Bour-
geois et al. (2003) review the use of MOx sensors and arrays
in environmental monitoring.

As compared to traditional monitors, electrochemical sen-
sors are relatively low in cost,∼ USD 50–100, and have
been used in multiple studies that required low power sen-
sors for measuring CO (Milton and Steed, 2006; Mead et
al., 2013). These sensors exhibit high sensitivity, low de-
tection limit (sub-ppm for some models), fast response, low
cross-sensitivity, and consume power in the hundreds of µW
range. However, they have more complicated and expensive
measurement circuitry, are susceptible to poisoning, have a
shorter life span (generally 1–3 years), more expensive than
MOx, and are generally larger in size than MOx.

1.2.2 Ozone

FRM measurements of O3 are made using the principle
of chemiluminescence (EPA ISA Health Criteria, 2013a).
Chemiluminescence instruments typically cost USD 10 000–
20 000 and use approximately 1 kW. A Federal Equivalence
Method uses UV absorption to measure an O3 concentration.
Such instruments have prices in the low USD 1000s.

MOx O3 sensors have been commercialized and can cost
anywhere in the range of∼ USD 5–100, with power con-
sumption as low as 90 mW. Aeroqual has commercialized
a tungsten oxide semiconductor sensor board. Power con-
sumption is 2–6 W, and this material is reported to have less
cross-sensitivity and calibration drift than other MOx materi-
als (Williams et al., 2009, 2013). As discussed in more detail
later, we refer to drift when discussing changes to the cali-
bration function coefficients over time, given recalibrations
under the same conditions. Electrochemical sensors are also
available with reported noise of 4 ppb, but with significant
cross-sensitivity to NO2 (Alphasense, 2013a).

1.2.3 Nitrogen oxides (NOx)

FRM measurements of NOx are made using the chemi-
luminescence reaction of O3 with NO along with the
catalytic reduction of NO2 to NO (EPA ISA Health
Criteria, 2013b). These instruments typically cost
USD 10 000–20 000 and consume approximately 1 kW
power. NO2 can also be measured with electrochemi-
cal sensors (∼ USD 80–210) (Alphasense, 2013b; SGX
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Sensortech (http://www.sgxsensortech.com/) and MOx
sensors (∼ USD 4–54) SGX Sensortech; Synkera (www.
Synkerainc.com); Figaro (http://www.figarosensor.com/)).

1.2.4 Carbon dioxide (CO2)

CO2 is the primary anthropogenic greenhouse gas, as well
as a proxy for assessing ventilation conditions in indoor en-
vironments. Elevated concentrations have been found to af-
fect decision-making and exam performance (Satish et al.,
2012). Portable non-dispersive infrared (NDIR) carbon diox-
ide sensors are precise, easy to calibrate, easy to integrate
into a mobile sensing system (Yasuda et al., 2012), and are
commercially available for under USD 100 to a few hundred
USD. The sensors operate by emitting a pulse of infrared ra-
diation across a chamber. A detector at the other end of the
chamber measures light intensity. Absorption of light by CO2
accounts for the difference between expected and measured
intensity. Interference can occur due to absorption by water
vapor and other gasses and drift can occur due to changes
in the light source (Zakaria, 2010). Electrochemical sensors
are also available to measure CO2. They are inexpensive and
have low power requirements, but generally have slower re-
sponse times, shorter life spans, and are more susceptible to
poisoning and drift than NDIR-type sensors.

1.3 Instruments for personal air quality monitoring

Personal exposure has been characterized extensively using
filter samplers, particle counters, and sorbent tubes. These
methods can provide simple, accurate, and comprehensive
speciation results; however, because each filter or adsorbent
tube typically samples for durations of a day or more, impor-
tant time series information is often lost when using these
methods. Relatively recent sampling techniques allow for
higher time-resolution personal measurement of pollutants.

Electrochemical sensors have been used to monitor CO in
many works, including Kaur et al. (2007), Mead et al. (2013),
Honicky et al. (2008), and Milton and Steed (2006). Shum et
al. (2011) developed a wearable CO, CO2, and O2 monitor.
Mead et al. (2013) and Honicky et al. (2008), using electro-
chemical and MOx sensors, also monitored both O3 and NOx
in the works listed above. Williams et al. (2009) developed
and deployed a portable tungsten oxide-based O3 sensor and
NO2 sensor. Hasenfratz et al. (2012) also monitored O3 in a
train-mounted instrument study using metal oxide semicon-
ductor sensors. Hasenfratz’s work tested collaborative cal-
ibration performance, in which sensor nodes were periodi-
cally co-located to check and improve calibrations. De Vito
et al. (2009) developed a wearable system to measure CO,
NO2, and NOx, using MOx sensors, and employed machine
learning techniques for calibration and quantification.

Tsow et al. (2009) developed wearable monitors to mea-
sure benzene, toluene, ethyl-benzene and xylene at ppb lev-
els. The measurement is based on a MEMS tuning fork

design that provides good selectivity and low detection lim-
its, but the device is not yet commercially available. Elec-
tronic nose systems for sensing VOCs are commercially
available, often designed to detect specific gas mixtures from
processes. Such systems use a variety of sensing techniques,
including those mentioned above, as well as polymer-coated
sensors, mass spectrometry, ion mobility spectrometry, and
gas chromatography, among others (Gardner and Bartlett,
1994; Röck et al., 2008). Much potential remains to be ex-
ploited in this area, as there has been difficulty in transferring
laboratory success to the field (Marco, 2014).

These models and most real-time personal exposure moni-
tors are currently too expensive to be truly ubiquitous. Fortu-
nately, advancements in technology and increasing concern
about air quality in many regions have produced a wave of
low-cost personal exposure instruments. Reliable results are
needed for users of these low-cost monitors before they take
action to reduce their exposure. We describe our novel quan-
tification system that includes collocation calibration (some-
times referred to as normalization), modeling of sensor re-
sponses with environmental variables, and uncertainty esti-
mation for these measurements. We demonstrate this quan-
tification system by presenting results from a user study
where six users wore monitors for 10–20 days.

2 Methods

2.1 MAQS – Mobile Air Quality Sensing System

The key requirements for our mobile sensing system in-
cluded wearability and portability, low-cost, multi-pollutant,
wireless communication, and enough battery life to wear
for an entire day. The goal was for our system to sense as
many National Ambient Air Quality Standards (NAAQS) cri-
teria pollutants at typical ambient concentrations as possible.
The result of our development effort is the M-Pod, shown in
Fig. 1.

The M-Pod collects, analyzes, and shares air quality data
using the Mobile Air Quality Sensing (MAQS) system (Jiang
et al., 2011). An Android mobile phone application, MAQS3
(Mobile Air Quality Sensing v.3), pairs with the M-Pod via
Bluetooth, and the M-Pod data is transmitted to the phone
periodically. The data is then sent to a server for analysis. A
web-based analysis and GIS visualization platform can ac-
cess new data from the server. Wi-Fi fingerprints can also
be used to identify an M-Pod’s indoor locations (Jiang et
al., 2012). The M-Pod has also been configured to operate
with another environmental data collection app, AirCasting
(http://aircasting.org/).

Each M-Pod houses four MOx sensors to measure CO, to-
tal VOCs, NO2, and O3 (SGX Corporation models MiCS-
5525, MiCS-5121WP, MiCS-2710, and MiCS-2611), an
NDIR sensor (ELT, S100) to measure CO2, a fan to pro-
vide steady flow through the device (Copal F16EA-03LLC),
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Figure 1. The M-Pod and the accompanying MAQS3 phone appli-
cation.

a light sensor, and a relative humidity and temperature sensor
(Sensirion, SHT21). Socket-mount MOx sensors were pre-
ferred over surface-mount sensors because of the difficulty
replacing the surface-mount sensors and possible poisoning
of the surface-mount sensors due to soldering (hot-air re-
flow).

2.2 Calibration system

MOx sensors represent the lowest cost sensing solution but
hold significant quantification challenges. MOx sensor re-
sponses are non-linear with respect to gas concentration, and
are affected by ambient temperature and humidity (Sohn et
al., 2008; Barsan and Weimar, 2001; Delpha et al., 1999; Ro-
main et al., 1997; Marco, 2014).

Baseline drift and changes in sensitivity over time are also
common. As will be discussed further later, we define drift
as changes in sensor baseline over time. More specifically,
we identify two factors contributing to temporal drift: pre-
dictable drift due to changes in the heater output, and unpre-
dictable drift due to poisoning or irreversible bonding to the
sensor surface (Romain and Nicolas, 2010). As such, using
MOx sensors quantitatively requires that a model be devel-
oped which not only characterizes the relationship between
sensor resistance and gas concentration, but also includes the
impacts of these other variables and sensor characteristics.
Below we describe our calibration system and strategies for
overcoming these challenges.

Our calibration system uses automated mass flow
controllers (MFCs, Coastal Instruments FC-2902V) and
solenoidal valves to inject specific mixtures of gas standards
into a Teflon-coated aluminum chamber that is equipped with
temperature and relative humidity control. The CO and NO2
used were premixed certified gas standards, while the CO2
and air were industrial and zero-grade, respectively. Constant
gas flows were administered using the mass flow controllers,
which were calibrated prior to the M-Pod calibrations. Cus-
tom LabVIEW software (LabVIEW 2011) and Labjack data
acquisition devices (LabJack U3-LV) were used for instru-
ment control and data logging.

The CO and NO2 sensors were calibrated for changes in
both temperature and humidity. By contrast, the CO2 sensors
were only calibrated for temperature, as they show a small
non-linear response to temperature. While humidity effects
have been reported for NDIR sensors in other studies (Yasuda
et al., 2012), previous calibrations in our lab showed that it
is not a significant issue in this case. Temperature is con-
trolled using a heat lamp and by performing calibrations in-
side a refrigerated chamber. Routing a portion of the airflow
through deionized water controls relative humidity, using a
3-way valve.

The M-Pods were placed in a carousel type enclosure that
holds 12 M-Pods and allows for uniform gas diffusion into
each pod (Supplement Fig. S2). The carousel, which is made
of steel with a polycarbonate lid, has a volume of 2.2 L, and
conditions reachT90 steady state in 120 s or less using our
selected flow rate of 4.3 Lpm. For calibrations, the carousel
is either placed inside of the Teflon coated chamber, or in a
refrigerator, depending on the desired temperature level.

Calibrations were performed after sensors operated con-
tinuously for at least a week. Performance of these sensors
for 1 week was important to ensure adequate sensor warm-
up and stabilization time. Specifically, warm-up time allows
for stabilization of the semiconductor heating element, which
can drift substantially in the first week (Masson et al., 2014).
After this period, warm-up times when the sensor is simply
heating up to operating temperature are shorter, on the order
of 10 min. Because each calibration run consisted of differ-
ent gas concentrations, temperature and humidity set points,
sensors were held at each state for periods of 15 min to allow
them to reach steady state. The last 30 s of each 15 min period
were averaged, and these points were used for the calibration.
Administered concentrations depend on the expected deploy-
ment environment, and in this case stepped from 0-1.0-2.0-
4.2 ppm for CO, and 0-500-1075-1650 ppm for CO2. Combi-
nations of environmental conditions for these calibrations in-
cluded M-Pod temperatures of approximately 302 and 317 K,
and for CO calibration additional relative humidity levels of
20 and 60 % were employed. A CO calibration time series
and surface used after one deployment at CAMP is shown in
Figs. S3 and S4 in the Supplement.

Initially, the sensors were calibrated by mounting them on
large arrays, but we found that the sensor response is highly
dependent on the position in the array and air-flow condi-
tions. The convective cooling of the sensors is thus an im-
portant variable, as will be discussed further later. To ensure
that calibration temperature and flow conditions about each
sensor are the same as during operating conditions, they are
calibrated in their individual M-Pods.

2.3 Development of quantification models

To simplify the inter-comparison of MOx sensors (which
are often heterogeneous from sensor to sensor; Romain and
Nicolas, 2010), it is common practice to normalize a sensor’s
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resistance by a reference resistance,Ro. The reference resis-
tance is the sensor’s unique response to a given environment,
for example, cleans air at 25◦C, standard atmospheric pres-
sure, and 20 % relative humidity. As such, a sensor quan-
tification model relatesRs / Ro to concentration, tempera-
ture and humidity. Other works have developed procedures
for this for different sensors and applications, using a vari-
ety of techniques. For example, De Vito et al. (2009) used
a multivariate approach with automatic Bayesian regulariza-
tion to limit the effects of cross-sensitivity. Numerous works
have also used machine-learning techniques such as neu-
ral networks to determine concentration values and/or iden-
tify mixtures (Kamionka et al., 2006; Zampolli et al., 2004;
Sundgren et al., 1991; Wolfrum et al., 2006) and identify
pollution sources. However, to our knowledge, a paramet-
ric regression-based model has yet to be developed for these
specific sensors. We believe this type of model is preferable
for ease of implementation. Comparing system performance
with an aforementioned machine learning-based approach is
a logical next step for this research.

Two sensor models were chosen for the majority of the
analysis conducted thus far: the MiCS-5121WP CO/VOC
sensor and MiCS-5525 CO sensor (both manufactured by
SGX Sensortech). The VOC sensor was chosen because of
our strong initial interest in indoor air pollution. The MiCS-
5525 was the logical next step because it has the same semi-
conductor sensor surface as the MiCS-5121, but with an acti-
vated charcoal pre-filter. Both lab data and ambient colloca-
tion data were used to convert sensor signal to concentration.
In lab experiments, the sensors were calibrated in the Teflon-
coated chamber. The chamber and calibration system are de-
scribed in detail in the Supplement. The model derived from
this data was then applied to each M-Pod CO sensor used
in the collocation. Our results show that the CO, NO2 and
O3 MOx sensors can detect ambient concentrations in Col-
orado when frequently calibrated. For context, ambient con-
centrations of the criteria pollutants in Colorado are usually
NAAQS compliant. O3 is the only pollutant with occasional
violations at some local monitoring sites (CDPHE Annual
Data Report, 2012).

Figure 2 illustrates the MiCS-5525 CO sensor response to
changing temperature at various concentrations of CO. Al-
though humidity can have a substantial effect on sensor re-
sponse, we found that with these sensors the expected range
of absolute humidity has a lesser effect on signal response
than the effect of the expected temperature range. Therefore,
absolute humidity was held constant so as to simplify the
procedure and minimize the degrees of freedom within the
model response. We later add a humidity term in the collo-
cation calibration analysis to improve model performance.
From experimental observation, the sensor response appears
to change linearly with respect to temperature for a given
CO concentration between concentrations of 0 and 2.8 ppm.
The slope and intercept of the linear temperature trends
also appear to decrease with increasing CO concentration.

Figure 2. MiCS-5525 CO sensor response to various CO concen-
trations while held at different ambient temperatures.

Equation (1) was chosen as the best fit for the observed sen-
sor response to CO concentration and temperature. A third
term of the same form was added to the model to account for
changes in absolute humidity (H ).

Rs

Ro
= f (C)(T − 298) + g(C) + h(C)H (1)

In this model,f (C) describes the change in temperature
slope with respect to pollutant concentration;g(C) describes
the change in resistance in dry air at 298 K due to concen-
tration; andh(C) describes the change in absolute humidity
slope with respect to concentration. The termsf (C), g(C),
andh(C) were chosen to be of the formp1exp(Cp2).

This model form performed well for all MOx sensors used,
but is computationally challenging to work with because it is
not algebraically invertible. Instead, we used a second-order
Taylor approximation for this model (Kate, 2009). However,
an even simpler model in temperature, absolute humidity,
and concentration (Eq. 2) was found to perform similarly in
many cases. The comparable performance of the models is
likely due to the low variation in CO concentration observed
throughout the field experiments. Though we did not perform
the same lab calibration tests with the NO2 and O3 sensors,
we found that in collocation calibrations, Eqs. (2) and (3)
also fit the data comparably to the model in Eq. (1).

Rs

Ro
= p1 + p2C + p3T + p4H (2)

In cases with longer time series and multiple calibrations, a
time term,p5t , was added to correct for temporal drift.

Rs

Ro
= p1 + p2C + p3T + p4H + p5t (3)

Equation (3) was used throughout the results unless other-
wise noted.

We determined concentration uncertainty by propagating
the error in the calibration model through the inverted cal-
ibration function (NIST Engineering Statistics Handbook
2.3.6.7.1). The calculation included co-variance terms, but
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did not include the propagated uncertainty of the tempera-
ture, humidity, nor voltage measurements, as those are ex-
pected to be insignificant relative to the other sources of
error. The calculated uncertainty does not directly account
for sources of error such as convection heat loss or cross-
sensitivities that may be seen in field measurements but not
during calibration. Convective heat loss due to changes in
airflow through the M-Pod are a concern with any system
using passive aspiration, as has been shown by Vergara et
al. (2013). Collocation calibration should account for some
cross-sensitivity effects since there is simultaneous exposure
to a wide array of environmental conditions. Some sources
of error are still not accounted for though, such as transient
temperature effects due to convection. Such effects are likely
more substantial when users carry the M-Pod than during a
collocation, due to the user’s motion and activity.

To explore the validity of this uncertainty propagation, we
employed duplicate M-Pods during a user study. For this user
study data, when there were duplicate M-Pod measurements
but no reference monitors, we used two additional methods
to explore uncertainty, the average relative percent difference
(ARPD), and the pooled pairwise standard deviation of the
differences (SDdiff ) (Table 3). These formulas are defined as
follows:

SDdiff =

√√√√ 1

2n

n∑
i=1

(
C

primary
i − C

duplicate
i

)2
(4)

ARPD=
2

n

n∑
i=1

∣∣∣Cprimary
i − C

duplicate
i

∣∣∣(
C

primary
i + C

duplicate
i

) · 100 %. (5)

This approach, outlined in Dutton et al. (2009), provides an
additional assessment of measurement uncertainty, and can
be compared to the uncertainties calculated using propaga-
tion of error to understand if the propagation has captured
most real sources of error. To calculate the ARPD, negative
data were removed. In the future, zero replacement, or detec-
tion limit replacement for data with negative values, will be
considered. The ARPD was then multiplied by the average
pooled concentration measurements to get units of concen-
tration that could be directly compared with the uncertainty
estimates derived through propagation. This approach of us-
ing paired M-Pods does not necessarily incorporate error due
to convection either, since the pair will generally have very
similar airflow effects in both units. This is a limitation that
should be studied further in this system.

2.4 Validation and user study

From 3 to 12 December 2012, and later from 17 to 22 Jan-
uary 2013, nine M-Pods were co-located with reference in-
struments at a Colorado Department of Public Health and
Environment (CDPHE) air monitoring station in downtown

Denver. Total system performance was assessed by compar-
ing laboratory-generated calibrations with calibrations based
on “real-world” ambient data, referred to as collocation cal-
ibrations. This procedure may technically be sensor normal-
ization, but we will refer to it as calibration here, as that is
the practical purpose, and the mathematical procedure does
not differ. Although less sophisticated, collocation calibra-
tion provides a practical and useful method of assessing sen-
sor performance. The 2nd collocation was performed with a
fresh set of sensors and yielded slightly better results (Sup-
plement). Reference instruments for calibration and valida-
tion were provided by CDPHE and the National Center for
Atmospheric Research (NCAR). CO was measured using a
Thermo Electron 48c monitor, CO2 and H2O were measured
with a LI-COR LI-6262, NO2 was measured using a Tele-
dyne 200E, and O3 was measured with a Teledyne 400E. The
CO2 instrument was calibrated before the deployment (LI-
COR, 1996), while the others were span- and zero-checked
daily as per CDPHE protocol. The M-Pods were positioned
8 feet from the sampling inlets. They operated continuously
in a ventilated shelter on the roof of the facility.

In the user-study portion of the validation, nine M-Pods
were carried for over 2 weeks, with three users each carrying
two M-Pods. The objective of the user study was to under-
stand M-Pod inter-variability and how they drift over time
during personal usage. Therefore, the actual personal expo-
sure results are deemed less important, and are found in the
Supplement. The M-Pods were calibrated before and after
the deployment using collocation calibrations, following the
same procedures as described for the December and January
collocations. They were collocated at the CDPHE monitor-
ing site in downtown Denver for∼ 1 week before and af-
ter the user study. They were worn on the user’s upper arm
or attached to backpacks or bags, and were placed as close
as possible to the breathing area when users were sitting or
sleeping. Users also kept daily logs with location and activity
information.

Measurement values are minute medians of the 1/10 Hz
raw data. The raw data were filtered beforehand for elec-
tronic noise. Sensor-specific thresholds of two standard de-
viations on the differences between sequential values were
used to identify and remove noise spikes. An upper bound
threshold on sequential differences provided another layer of
filtering for the noisiest data. To ensure that sensors were
warmed up, 10 minutes of data were removed after power-
on. Additional noise filtering was applied for the collocation
tests due to a bad USB power supply. These data were fil-
tered for noise by applying the Grubbs test for outliers to the
differences between all the M-Pods and a “reference” M-Pod
that displayed less electronic noise. Final data completeness
for the first and second collocation deployments ranged from
74.5 to 90.1, and 56.5 to 99.1 %, respectively. Data filtered
from each deployment were then 0.4–10.9 and 0.4–4.8 %.
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Table 1.Collocation calibration summary statistics for December collocation using the linear model from Eq. (3).

CO (ppm) O3 (ppb)

drift drift
N mean std med 5th % 95 % (ppm day−1) S/ N N mean std med 5th % 95 % (ppb day−1) S/ N

M-Pod 1 14157 0.59 0.69 0.47 −0.18 1.87 0.02 1.22 12919 11.8 18.4 9.7−9.2 41.1 −0.6 0.7
M-Pod 13 13835 0.60 0.71 0.47 −0.23 1.92 −0.01 1.14 13987 13.1 12.8 9.9 −2.8 36.0 −0.4 1.8
M-Pod 15 13769 0.60 0.76 0.47 −0.26 2.00 0.03 1.00 11749 10.5 18.3 7.9−9.1 37.5 −0.4 0.5
M-Pod 17 14006 0.60 0.74 0.49 −0.29 1.91 −0.01 1.11 13365 12.2 12.9 9.0 −3.9 35.2 −0.3 1.4
M-Pod 18 13976 0.60 0.69 0.47 −0.16 1.90 −0.03 1.26 14090 13.0 15.0 9.9 −4.6 38.2 −0.3 1.0
M-Pod 19 14097 0.60 0.78 0.52 −0.39 1.98 −0.02 1.03 13451 12.2 12.8 8.3 −3.2 35.6 −0.1 1.4
M-Pod 21 14007 0.60 0.75 0.51 −0.32 1.90 −0.05 1.09 13365 12.2 12.2 8.2 −2.0 32.5 −0.1 2.0
M-Pod 23 14013 0.60 0.74 0.50 −0.30 1.95 −0.03 1.14 13368 12.2 12.2 8.3 −2.1 33.2 −0.2 1.9

Median 14007 0.60 0.74 0.48 −0.27 1.92 −0.01 1.13 13366.5 12.2 12.9 8.7 −3.6 35.8 −0.3 1.4

NO2 (ppb) CO2 (ppm)

drift drift
N mean std med 5th % 95 % (ppb day−1) S/ N N mean std med 5th % 95 % (ppm day−1) S/ N

M-Pod 1 14157 29.3 16.3 30.4 3.1 52.3 −0.3 3.7 14318 466.8 45.0 453.7 426.6 558.5 −1.5 53.9
M-Pod 13 14311 466.8 46.7 455.1 418.1 562.4 −2.8 27.2
M-Pod 15 14188 466.4 44.8 454.0 423.7 555.6 −1.6 47.6
M-Pod 17 13997 29.4 17.0 30.3 0.4 53.0 0.3 3.2 14295 466.9 44.8 454.2 426.0 557.0 −0.7 63.4
M-Pod 18 14079 29.4 16.8 29.6 1.8 53.9 −0.9 3.4 14080 466.7 44.9 453.6 427.2 561.2 −1.2 57.7
M-Pod 19 14096 29.4 16.6 30.6 1.8 53.0 0.0 3.5 14309 466.8 45.5 453.3 424.4 557.9 −2.3 36.9
M-Pod 21 13883 29.3 16.2 30.5 3.1 51.7 −0.4 3.8 14311 466.8 48.1 456.8 411.9 558.5 0.3 24.7
M-Pod 23 14013 29.2 15.8 30.3 4.4 51.9 −0.5 4.4 14311 467.3 50.4 457.1 410.9 573.4 −1.5 18.5

Median 14046 29.3 16.5 30.4 2.5 52.6 −0.34 3.6 14310 466.8 45.3 454.1 424.1 558.5 −1.5 42.2

Table 2. Standard errors for the various calibration models tested with the December collocation data set. Equation (1), the exponential
model, was not able to fit O3 satisfactorily for some unknown reason.

CO2 (ppm) CO (ppm) O3 (ppb) NO2 (ppb)

Model Eq. (6)b Eq. (6) w/timeb Linearb Lineara Eq. (1)b Eq. (2)b Eq. (3)b Eq. (1)a Eq. (1)b Eq. (2)b Eq. (3)b Eq. (1)b Eq. (2)b Eq. (3)

M-Pod 1 8.4 7.3 11.0 138.7 0.4 0.38 0.38 3.69 NAc 15.4 14.9 7.2 8.2 8.2
M-Pod 13 16.8 14.4 18.2 29.1 0.4 0.42 0.41 3.54 NAc 5.6 5.4
M-Pod 15 9.5 8.4 10.1 43.3 0.4 0.46 0.46 2.85 NAc 15.3 14.9
M-Pod 17 7.2 6.9 15.5 15.2 0.4 0.44 0.44 3.22 NAc 6.4 6.2 7.5 9.5 9.5
M-Pod 18 7.9 7.1 10.5 30.0 0.3 0.38 0.37 3.58 NAc 9.8 9.6 7.9 9.0 8.8
M-Pod 19 12.3 10.4 31.4 125.3 1.8 0.52 0.51 4.49 NAc 5.8 5.8 7.0 8.6 8.6
M-Pod 21 18.5 18.6 22.4 105.0 0.7 0.49 0.47 3.42 NAc 4.2 4.1 6.9 8.0 7.9
M-Pod 23 24.8 23.9 48.8 93.5 0.4 0.45 0.44 5.33 NAc 4.4 4.4 6.0 6.9 6.8

Median 10.9 9.4 16.8 68.4 0.4 0.45 0.44 3.56 23064.1 6.1 6.0 7.1 8.4 8.4

a Lab calibration,b Collocation calibration, NAc unable to find a reasonable numerical solution.

3 Results

3.1 Lab vs. collocation calibration results

A summary of the results from the 3 to 12 December collo-
cation and lab-calibrated data are presented in Tables 1 and
2. Table 1 shows summary statistics for the first collocation
calibration, while Table 2 shows the performance for the dif-
ferent calibration methods and models.

3.1.1 MOx sensor results

The MiCS-5525 CO sensor was found to have substantially
higher error using lab-calibrations versus collocation calibra-
tions. As shown in Table 1, the median standard error for
collocation calibration was 0.45 ppm (range 0.38–0.52 ppm),
while the median lab calibration standard error was 3.56 ppm

(range 2.85–5.33 ppm). Adding a linear time correction, as in
Eq. (3), was found to improve the fit in most MOx sensor data
sets. In this case, it improved the fit of the collocation cali-
brations slightly, giving a median standard error of 0.44 ppm
(range 0.38–0.51 ppm). The median standard error for the
exponential-based model from Eq. (1) was 0.39 ppm (range
0.34–1.78 ppm), but it actually provided a worse fit in some
cases. The linear form of the equation, Eq. (2), is a good ap-
proximation of the exponential form shown in Eq. (1), likely
because of the small environmental variable space spanned
by the observed data. We have included residual plots (Fig. 3)
to demonstrate model performance. Note the absence of a
trend in these residual plots.
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Figure 3.NO2 data from M-Pod 23 from the December collocation.

The relationship between collocation-calibrated sensor
readings and reference data showed a slight negative bias at
the higher end of observed concentration levels, but this ap-
pears to be driven by a small number of data points.

Inter-sensor variability is of interest if these sensors are to
be widely deployed. Low variability could allow us to cali-
brate fewer sensors and apply those calibrations to other sen-
sors in a large network. Inter-sensor variability for CO was
generally low, with median correlation coefficients among
the M-Pods 0.70 (range 0.62–0.78). The signal to noise
(S/ N) ratio, defined as the median observed value over the
standard error, was 1.13 (range 1.00–1.26). This compares
with the reference monitor S/ N of 10.0, calculated using
the median standard error from four days of zero and span-
check data from the monitor as the noise. The S/ N ratio pro-
vides straightforward comparison of instruments, and shows
us how often the measurements are above the noise.

For the O3 and NO2 sensors, the model in Eq. (2)
gave evenly distributed residuals and median standard er-
rors of 6.1 ppb (range 4.2–15.4 ppb), and 8.4 ppb (range 6.9–
9.5 ppb), respectively. As shown in Table 2, the linear model
from Eq. (2) was found to fit the data nearly as well for NO2
as the non-linear model from Eq. (1), and is much less com-
putationally intensive to use. An NO2 example time series
using the linear model from Eq. (2) is shown in Fig. 3. The
non-linear model was not able to fit the O3 data with any suc-
cess, also shown in Table 2. The reason for this was not de-
termined despite repeated testing. Lab calibrations were not
performed for O3 and NO2. Median inter-sensor correlation
for O3 was 0.83 (range 0.46–0.99), and 0.96 (range 0.94–
0.99) for NO2. The median NO2 S/ N was 3.6 (range 3.3–
4.4), compared with the median reference instrument S/ N
of 23.4. For O3, the median S/ N ratio for the M-Pods was
1.4 (range 0.5–2.0), while the reference instrument we collo-
cated with had S/ N of 1.6. The reference instrument S/ N
were calculated in the same way as for the CO monitor, us-
ing the median value of standard error from multiple days of
zero and span data.

3.1.2 NDIR CO2 sensor results

CO2 values quantified with lab calibrations showed bias in
some M-Pods (see Table 2), while others showed a high de-
gree of accuracy. With collocation calibration, we also found

Figure 4. Calibration surface (using Eq. 4) for a CO2 collocation
calibration performed from 3 to 12 December using M-Pod 1.

a previously unseen temperature effect, described by

v = p1 + p2C + p3(T − p4)
2, (6)

wherev is the raw sensor signal. This model fit better than
a linear model in concentration, and an example is shown in
Fig. 4.

As shown in Table 2, when using linear models in con-
centration only, the median standard error for M-Pod CO2
measurements using the lab calibrations was 68.4 ppm (range
15.2–138.7 ppm), and was 16.8 ppm (range 10.1–48.8 ppm)
using the collocation calibration. Median standard error was
10.9 ppm (range 7.2–24.8 ppm) using the collocation cali-
bration model from Eq. (6), and adding a linear time cor-
rection to this model further improved the fit, dropping the
median standard error to 6.9 ppm. This drift term was sta-
tistically significant. The improvement in fit with the more
complex model may be due to a temperature effect of the
semiconductor infrared sensor, or an unidentified confound-
ing variable. Adding humidity as a variable was not found
to improve the fit significantly. Using the collocation calibra-
tion approach, the median correlation between CO2 sensors
in different M-Pods was 0.88 (range 0.58–0.98). The median
signal to noise ratio was 42.2 (range 18.5–63.4), as compared
with a reported 300–500 from the reference instrument used
(LI-COR, 1996).

3.2 User-study results

Based on initial lab and collocation calibration results, cal-
ibrations for the user-study were performed only with col-
location calibrations. Collocation calibrations were carried
out before and after the 3-week measurement period. Cal-
ibration fits were comparable to the prior collocation cali-
brations for CO (median standard error of 0.3 ppm), NO2
(median standard error of 8.8 ppb), and O3 (median stan-
dard error of 9.7 ppb). For CO2, the median standard error
was high (36.9 ppm), likely because we were unable to co-
locate a reference monitor with the M-Pods at these times.
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Table 3.Average pooled uncertainty calculations for user study duplicate measurements.

CO (ppm) O3 (ppb) NO2 (ppb)

Propagated Propagated Propagated
uncertainty SDdiff ARPD uncertainty SDdiff ARPD uncertainty SDdiff ARPD

M-Pod 6, 9 0.24 0.58 0.63 (66.9 %) 7.9 15.5 20.6 (59.8 %) 8.7 11.8 18.4 (38.6 %)
M-Pod 15, 16 0.92 3.8 4.57 (133 %) 14.6 17.1 18 (80.8 %) 8.8 7.4 12.0 (24.2 %)
M-Pod 23, 25 0.28 0.36 0.36 (55.5 %) 11.2 25.7 12.8 (53.3 %) 8.8 4.4 7.4 (19.9 %)

Instead, a calibration curve was generated using data from a
nearby ambient monitor operated by NCAR, and a lab cal-
ibration. The monitor, located at the Boulder Atmospheric
Observatory tower in Erie, Colorado, was used as reference
for a nighttime period when ambient background concentra-
tion was assumed to be uniform over the region. Correlations
among paired M-Pods during the user study ranged between
0.88 and 0.90 for NO2, 0.48 and 0.76 for CO, 0.33 and 0.92
for CO2, and 0.04 and 0.35 for O3. The range of correlations
for CO2 was due to power supply issues, which will be dis-
cussed later. We expect reliable CO2 sensor performance to
be easily achievable in future work. Despite the low standard
error from O3 sensor calibrations, we found low correlations
among the paired M-Pods during the user study, which is also
likely due to a power supply issue.

Measurement uncertainty calculated with the method of
propagation and the duplicate M-Pod statistics, ARPD and
SDdiff , defined in Eqs. (4) and (5), are compared in Table 3.
The results show moderate agreement among the methods
for most pollutants. For CO and O3, the propagated uncer-
tainty is lower than the SDdiff and ARPD, roughly 50–75 %
of it, confirming that there are sources of error that are not
accounted for in the uncertainty propagation. For NO2, the
propagated measurement uncertainty seems to capture most
of the uncertainty observed in the pairs. The RMSE values
from the sensor calibrations were found to account for the
majority of the propagated error. Figure 5 compares the CO
measurements from M-Pods 23 and 25, along with their 95 %
confidence interval, the ARPD, and SDdiff .

S/ N ratios during the user study were generally higher
than during the collocations. This suggests that during per-
sonal exposure measurement, when concentration peaks are
often higher than background measurements, the M-Pod is
able to detect those peaks above the noise. Analysis based on
the propagated uncertainty, ARPD, and SDdiff suggests that
propagated uncertainty is capturing most sources of error, but
it does require more testing to further validate uncertainty es-
timation approaches. Personal exposure measurement results
and discussion are shown in the Supplement.

Drift was seen to affect the measurement results, as de-
scribed in detail in the Supplement. In the context of sensor
work, drift is commonly considered to be deviations from an-
ticipated or normal operation. These deviations are often di-
rectional rather than normally distributed (Ziyadtinov et al.,

Figure 5. Personal CO measurement comparison between M-Pods
23 and 25, including 95 % confidence intervals in light and dark
gray, respectively.

2010), thus requiring more complex corrections. With this
broad definition, drift includes confounding effects such as
those due to temperature, humidity, pressure, and system
error. This makes lab experimentation and fieldwork a chal-
lenging task with MOx sensors. Lab experiments must be de-
signed to precisely control sensor temperature, humidity, gas
concentration, flow conditions, etc. (Vergara et al., 2012).
Even so, identifying mechanisms to cope with drift remain a
significant challenge. Significant progress towards drift cor-
rection has been made in the domain of artificial machine
learning (Di Natale et al., 2002; Vergara et al., 2012; Fonol-
losa et al., 2013; Martinelli et al., 2013).

For portable devices with limited computational power, or
a widely distributed system where simplicity is preferable, it
is advantageous to quantify the effect of drift through more
direct means. We compensated for drift using multiple col-
location calibrations with linear time corrections (Haugen
et al., 2000), and observed improved calibration fits. Aver-
age daily drift during the user study is shown in Table S1 in
the Supplement. For CO, all M-Pods experienced drift under
−0.05 ppm day−1, apart from M-Pod 15, which showed be-
havior we cannot explain. O3 sensors experienced between
−2.6 and 2.0 ppb day−1 drift. CO2 drift ranged from−4.2
to 3.1 ppm day−1, excluding the bad results from M-Pod 9.
NO2 generally showed a slight positive drift over time, with
a range of−1.56 to 0.51 ppb day−1.
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4 Discussion

The M-Pods performed well, given the relatively low am-
bient concentration environments encountered in the region.
For CO, NO2, and CO2, the reference instruments exhib-
ited S/ N ratios 8–10 times higher than the M-Pod measure-
ments. For O3, the reference monitor S/ N ratio was only
slightly higher than the median M-Pod value.

4.1 Lab calibration

Lab calibrations had higher measurement error than collo-
cation calibrations, likely because the field data covered a
wider range of environmental variable space than the lab cal-
ibration. The poor field performance of lab calibrations may
also be due to differences between the composition of zero-
grade air cylinders and ambient air. In this regard, filtered
house air may be better suited to transfer calibrations out of
the lab and to the field. Conducting field calibrations in the
region of interest helps to account for confounding factors
and meteorological variability.

CO2 lab-calibration results showed accurate results in
some cases, while in other M-Pods, we found significant bias.
Some CO2 sensors consistently showed poorer performance
than others. Strangely, the poorer performing ones were usu-
ally in good agreement with each other. We have no expla-
nation for this behavior, apart from possible sensor inconsis-
tencies, or a potential power supply issue, addressed in more
detail in the Supplement.

4.2 Collocation calibration

The time and resources required for lab calibration, and the
difficulty reconciling the lab and ambient results, led us to
rely more on collocation calibration. Collocation calibration
performed well during two wintertime tests. However, during
later collocation calibrations in warmer periods with rapidly
changing weather, we found more interference from either
reducing gases or humidity swings than we had previously
seen. This effect, coupled with generally lower CO levels
in the warmer months due to better atmospheric mixing and
improved motor vehicle combustion (Neff, 1997), resulted
in flatter and noisier calibration curves than previously seen.
To minimize this effect, some portions (10.1 %) of the cali-
bration data set were removed for April and May user study
calibrations. O3and NO2 had slightly worse calibration fits
than during the winter calibrations, likely also due to larger
swings in ambient humidity.

5 Conclusions

Collocation and collaborative calibration will be a valuable
tool in the next generation of air quality monitoring. With
help from monitoring agencies and citizen scientists, detailed
ground-level pollutant maps will one day help track sources,

reduce the population’s exposure, and improve our knowl-
edge of emissions as well as fate for each species. In this
work, we have demonstrated a quantification system that can
provide personal exposure measurements and uncertainties
for CO2, O3, NO2, and CO. This type of quantification ap-
proach provides access to air quality monitoring to a wider
audience of scientists and citizens. A laboratory calibration
system may cost thousands or tens of thousands of dollars,
while a collocation calibration system only requires a decent
enclosure for housing instruments. Whatever the application
and precision requirements, investment to develop a calibra-
tion infrastructure, whether in a laboratory or near a moni-
toring station, is worthwhile in applications like health and
exposure, source identification, and leak detection.

The Supplement related to this article is available online
at doi:10.5194/amt-7-3325-2014-supplement.
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