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Abstract—Wireless networks are vulnerable to Sybil attacks, in which a malicious node poses as many identities in order to gain

disproportionate influence. Many defenses based on spatial variability of wireless channels exist, but depend either on detailed,

multi-tap channel estimation—something not exposed on commodity 802.11 devices—or valid RSSI observations from multiple trusted

sources, e.g., corporate access points—something not directly available in ad hoc and delay-tolerant networks with potentially

malicious neighbors. We extend these techniques to be practical for wireless ad hoc networks of commodity 802.11 devices.

Specifically, we propose two efficient methods for separating the valid RSSI observations of behaving nodes from those falsified by

malicious participants. Further, we note that prior signalprint methods are easily defeated by mobile attackers and develop an

appropriate challenge-response defense. Finally, we present the Mason test, the first implementation of these techniques for ad hoc

and delay-tolerant networks of commodity 802.11 devices. We illustrate its performance in several real-world scenarios.

Index Terms—Wireless networks, ad hoc networks, security, Sybil attack
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1 INTRODUCTION

THE open nature of wireless ad hoc networks (including
delay-tolerant networks [1]) enables applications rang-

ing from collaborative environmental sensing [2] to emer-
gency communication [3], but introduces numerous security
concerns since participants are not vetted. Solutions generally
rely on a majority of the participants following a particular
protocol, an assumption that often holds because physical
nodes are expensive. However, this assumption is easily bro-
ken by a Sybil attack. A single physical entity can pretend to
be multiple participants, gaining unfair influence at low cost
[4]. Newsome et al. survey Sybil attacks against various proto-
cols [5], illustrating the need for a practical defense.

Proposed defenses (see Levine et al. for a survey [6]) fall
into two categories. Trusted certification methods [7], [8] use
a central authority to vet potential participants and thus are
not useful in open ad hoc (and delay-tolerant) networks.
Resource testing methods [9], [10], [11], [12] verify the resour-
ces (e.g., computing capability, storage capacity, real-world
social relationships, etc.) of each physical entity. Most are
easily defeated in ad hoc networks of resource-limited
mobile devices by attackers with access to greater resources,
e.g., workstations or data centers.

One useful class of defenses is based on the natural spa-
tial variation in the wireless propagation channel, an
implicit resource. Channel responses are uncorrelated over

distances greater than half the transmission wavelength [13]
(6 cm for 2.4GHz 802.11), so two transmissions with the
same channel response are very likely to be from the same
location and device [14], [15]. Note that two transmitters
may be close enough, i.e., �6 cm, to produce the same chan-
nel response, but this case is rare in practice.1 One class of
Sybil defenses based on this observation uses specialized
hardware to accurately measure and compare channel
responses [15]. However commodity devices are not
equipped with such hardware.

Commodity devices expose an aggregate, scalar value, the
received signal strength. RSSI can be changed by varying
transmit power, so a vector of observations from multiple
receivers—a signalprint—is used instead, as its direction stays
unchanged. Several authors have proposed such methods
[16], [17], [18], [19] assuming trusted, true observations from,
for example, access points (Fig. 1a). In open ad hoc networks,
observations are untrusted, coming from potentially lying
neighbors (Fig. 1b). In this case observations falsified by
attackers can lead to incorrect conclusions (Fig. 1c). Trust-less
methods have been proposed, but have various limitations
(e.g., devices must have uniform transmit power [20] or the
methodmay be used only in outdoor environments with pre-
dictable propagation ranges [21]). Instead, a general method
to separate true and false observations is needed.

We observe that, with high probability, attackers cannot
produce false observations that make conforming identities
look Sybil, due to the unpredictability of wireless channels.
We exploit this weakness to bound the number of misclassi-
fied identities. In cases where conforming nodes outnumber
physical attacking nodes (a major motivating factor for the
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1. In our experiments with smartphone users, distinct transmitters
displayed similar channel responses in fewer than 0.01 percent of cases
(see Fig. 15 in Section 9).
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Sybil attack), we develop a notion of consistency that ena-
bles fully accurate classification.

Signalprint-based detection is easily defeated by nodes
that change locations to produce multiple signalprints. Most
past work ignores this problem, assuming that all nodes,
including attackers, remain stationary. Although reasonable
for conforming nodes, e.g., most human-carried smartphones
are stationary over short time-spans, this is too strong an
assumption for attackers. We remove this restriction on the
attack model and defeat moving attacks by detecting and
rejecting moving nodes. The rejection is temporary. Nodes
can be tested again once stationary.

To detect moving attackers, Xiao et al. noted that suc-
cessive transmissions from the same stationary node
should have the same signalprint, while attackers cannot
quickly (i.e., in milliseconds) switch between precise
positions and therefore have inconsistent signalprints
[15]. They did not further develop or evaluate a method
making use of this observation. We develop a challenge-
response protocol from this idea and study its perfor-
mance on real deployments.

At a high level, we seek to allow a wireless network
participant to occasionally determine which of its one-hop
neighbors are non-Sybil. Verified non-Sybil participants,
uniquely identified by their public keys, may safely partici-
pate in other protocols. In mobile networks, the process
must be repeated occasionally (e.g., once per hour) as the
neighbors change. Safety is more important than system
performance, so nearly all Sybil identities must be detected.
In most applications, it is acceptable for some non-Sybils to
be rejected, e.g., any that were moving during the test.

We make the following primary contributions.

� We design two methods of Oðn3Þ complexity to sepa-
rate true and false RSSI observations, enabling sig-
nalprint-based Sybil detection in ad hoc networks of
nodes without mutual trust. The first method gives
partial separation, bounding the number of misclas-
sified identities. The second provides full separation,
but works only when conforming nodes outnumber
physical attacking nodes.

� We prove conditions under which a participant can
fully separate true and false observations.

� We develop a challenge-response protocol to detect
attackers attempting to use motion to defeat the sig-
nalprint-based Sybil defense.

� We describe the Mason test, a practical protocol for
Sybil defense based on these ideas. We implemented
the Mason test as a Linux kernel module for 802.11
ad hoc networks2 and characterize its performance
in real-world scenarios.

2 RELATED WORK

Many Sybil defense techniques are built on resource test-
ing of wireless channels, because placing transmitters in
many locations is much more difficult than acquiring
additional computation or memory resources. Xiao et al.
observe that in OFDM-based 802.11 channels, the coher-
ence bandwidth is much smaller than the system band-
width and thus the channel response estimates at well-
spaced frequency taps are uncorrelated, forming a vector
unique to the transmitter location and robust to changes
in transmitter power [15].

Li et al. use the unique mapping between identity and
wireless channel to develop a channel-based authentication
scheme, using both pulse-type probing in the time domain
and multi-tone probing in the frequency domain for channel
estimation [22]. Although not originally designed for Sybil
defense, applying this technique to detect multiple identi-
ties sharing the same channel is straightforward. A primary
drawback of this class of work is its restriction to specialized
hardware or firmware, as commodity 802.11 devices do not
expose detailed channel information to the driver and oper-
ating system.

Faria and Cheriton and Demirbas and Song indepen-
dently developed the signalprint technique, which greatly
simplifies channel estimations while maintaining high Sybil
detection performance [16], [17]. Instead of measuring
probe responses, a vector of RSSIs reported by multiple

Fig. 1. Prior work [15], [16] assumes trusted RSSI observations, which are not generally available in ad hoc and delay-tolerant networks. We present
a technique for a participant to separate true and false observations, enabling use in ad hoc networks. Arrows point from transmitter to observer.

2. http://github.com/EmbeddedAtUM/mason/
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receivers at different locations is used to characterize the
sender’s unique location and wireless environment.

This class of work [16], [17], [18], [19] has two disadvan-
tages. First it relies on trusted external measurements, e.g.,
RSSIs from trusted 802.11 access points, which are generally
unavailable in open ad hoc networks. Our work builds on
their ideas, but does not rely on any particular external
device being trustworthy. Second, it restricts the attack
model to stationary devices, even though attackers can eas-
ily use mobile devices. Our work detects and rejects moving
nodes, instead of accepting them as non-Sybil.

Lv et al. developed a method based on one-dimensional
signalprints, which therefore does not rely on any external
measurements [20]. However, it assumes, unrealistically, a
uniform transmit power for all devices, including attacking
devices.

Bouassida et al. developed a trust-less method for vehicu-
lar area networks. Instead of relying on external measure-
ments, the verifier obtains uncorrelated measurements by
changing its own reception locations. These measurements
are used to locate the transmitter and detect abnormalities. It
also rejects moving nodes with significant location changes
over multiple measurements [21]. However, this technique
relies on a predictable propagation model for location
estimation that fails to capture the notorious variations of
wireless channels. Our method does not assume any propa-
gation model. Instead, we rely on the unpredictability of
wireless signal propagation to defeat lying attackers.

3 PROBLEM FORMULATION AND BACKGROUND

In this section, we define our problem, summarize the solu-
tion framework, describe our attack model, and briefly
review the signalprint method.

3.1 Problem Formulation

Our goal is to extend signalprint-based Sybil detection
methods to work without a priori trust in any observer,
allowing any participant in an open wireless network to
determine which of its one-hop neighbors are non-Sybil.
The solution framework is illustrated in Fig. 2 with five

participants. We assume an arbitrary identity (or condition)
starts the process. Participants first take turns broadcasting
probe packets while all others record the observed RSSIs
(Fig. 2a). These observations are then shared, although mali-
cious nodes may lie. Fig. 2b shows every participant after
this exchange, with observations from all five participants.
Finally each participant individually selects a (hopefully
truthful) subset of observers for signalprint-based Sybil
classification (Fig. 2c).

This paper presents our method for truthful subset selec-
tion and fleshes out this framework into a usable, safe, and
secure protocol. As with any system intended for real-world
use, we had to carefully balance system complexity and
potential security weaknesses. Section 10 discusses these
choices and related potential concerns.

3.2 Attack Model

We model attackers who operate commodity devices, but
not specialized hardware. Commodity devices can be
obtained at a large scale by compromising those owned by
normal network participants, a more practical attack vector
than distributing specialized hardware at the same scale.
Specifically, we assume attackers have the following capa-
bilities and restrictions.

1) Attackers may collude through arbitrary side
channels.

2) Attackers may accumulate information, e.g., RSSIs,
across multiple rounds of the Mason test.

3) Attackers have limited ability to predict the RSSI
observations of other nodes, e.g., 7 dBm uncertainty
(see Section 6), precluding fine-grained pre-
characterization.

4) Attackers can control transmit power for each
packet, but not precisely or quickly steer the output
in a desired direction, i.e., they are not equipped for
antenna array-based beam-forming.

5) Attackers can move their devices, but cannot quickly
and precisely switch them between multiple posi-
tions, e.g., they do not have high-speed, automated
electromechanical control.

Fig. 2. The solution framework for signalprint-based Sybil detection in ad hoc networks. This paper fleshes out this concept into a safe and secure
protocol, the Mason test.
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One common denial-of-service (DOS) attack in wireless
networks—jamming the channel—cannot be defended
against by commodity devices. Thus, we do not defend
against other more-complicated DOS attacks. However,
note that ad hoc and delay-tolerant networks are much
more resistant than infrastructure networks to such attacks,
because a single attack can affect only a small portion of the
network. Moreover, DOS attacks are less catastrophic to pri-
vacy and security than successful Sybil attacks.

Notably, we assume attackers do not have per-antenna
control of multiple-input and multiple-output (MIMO) [23]
devices. Such control would defeat the signalprint method
(even with trusted observers), but is costly to implement.
Commodity MIMO devices (e.g., 802.11n adapters) do not
expose this control to software and thus are not suitable
attack vectors. Distributing specialized MIMO-capable
hardware over large portions of the network would be pro-
hibitively expensive.

We believe that the signalprint method can be extended
to MIMO systems (see our technical report for an overview
[24]), but doing so is beyond the scope of this work. Our
focus is extending signalprint-based methods to ad hoc net-
works of commodity devices by removing the requirement
for trusted observations.

3.3 Review of Signalprints

We briefly review the signalprint method. See prior work
for details [15], [17]. A signalprint is a vector of RSSIs at mul-

tiple observers for a single transmission. Ignoring noise, the

vector of received powers (in logarithmic units, e.g., dBm)

at multiple receivers for a given transmission can be

modeled [13] as~s ¼ ~h þ p~1; where p is the transmit power

and ~h is the attenuation vector, a function of the channel

amplitude response and the receiver characteristics. Trans-

missions from different locations have uncorrelated signal-

prints, as the channel responses are likely uncorrelated.

Those from the same location, however, share a channel
response and will be correlated. That is, for two transmis-

sions a and b from the same location with transmit powers

pa and pb ¼ pa þ c; the signalprints ~sb ¼ ~h þ pa~1 and

~sb ¼ ~h þ ðpa þ cÞ~1 are related as ~sb ¼~sa þ c~1: In other

words, all observers see the same RSSI difference c for the

two transmissions.
This is illustrated geometrically in Fig. 3 for a two-

receiver signalprint. A and B are Sybil, while C is not. D
and E are also Sybil, but due to noise the signalprints are
not perfectly correlated. Instead, signalprints on lines closer
than some threshold are taken to be Sybil.

Definition. The signalprint distance dð~sa;~sbÞ between two sig-
nalprints ~sa and~sb is the perpendicular distance between the
slope-1 lines containing them. Letting

~w , ~sa �~sb
be the distance vector between the signalprints and

~v? , ~w � ~w �~1
k~1k2

~1

be the vector rejection of ~w from~1, then

dð~sa;~sbÞ ¼ k~v?k:

Fig. 4 shows the distance distributions for Sybil and non-
Sybil identities using measurement data for commodity
Android devices.3 The two distributions are well separated
with small overlap, so the choice of classification threshold
trades false positives for false negatives. A good threshold
supports detection of at least 99.9 percent of Sybils while
accepting at least 95 percent of non-Sybils, as reported by
previous research [15], [17] and confirmed by our own mea-
surement (see Fig. 13).

4 SYBIL CLASSIFICATION FROM

UNTRUSTED SIGNALPRINTS

In this section we describe two methods to detect Sybil iden-
tities using untrusted RSSI observations. In both cases, a set
of candidate views containing the true view (with high
probability) is generated. The accepted view is chosen by a
view selection policy. The first method selects the view
indicting the most Sybils, limiting the total number of incor-
rect classifications. The second selects the true view, but
works only when conforming nodes outnumber physical
attacker nodes.

4.1 The Limited Power of Falsified Observations

Our key observation is that falsified RSSI observations have
limited power. Although falsifying observations to make
Sybil identities look non-Sybil is easy, it is extremely difficult
to make a non-Sybil look Sybil. To see this, recall that a pair
of identities is considered Sybil only if all observers, includ-
ing the initiator itself, report the same RSSI difference for the
pair’s transmissions. Making true Sybils appear non-Sybil is
easy, because randomly chosen values almost certainly fail

Fig. 3. Sybils, A-B andD-E, occupy nearby slope-1 lines. Fig. 4. The classification threshold trades false positives for negatives.

3. We used size-4 signalprints from the “Outdoor” experiment in
Section 9.
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to match the difference observed by the initiator. Making a
non-Sybil look Sybil, however, requires learning the differ-
ence observed by the initiator, which is kept secret. Guessing
is difficult due to the unpredictability of the wireless chan-
nels. Our methods rely on this difficulty. They are developed
formally in the rest of this section. Quantitative characteriza-
tions are described in Section 6. To summarize, the success
probability for a guessing attacker is less than 10�6 in com-
mon situations, e.g., when conforming nodes outnumber
physical attackers bymore than 1.53� (see Fig. 8).

4.2 Terminology

Table 1 lists all the terms and symbols used in the develop-
ment of the classification methods. I is the set of participat-
ing identities. Each is either Sybil or non-Sybil and reports
either true or false4 RSSI observations, partitioning the iden-
tities by their Sybilness (sets S and NS) and the veracity of
their reported observations (sets T and L).

Truthtelling, non-Sybil identities are called conforming
(set C). Liars and Sybil identities are called attacking (sets
LS, LNS, and TS). Our goal is to distinguish the S and NS
partitions using the reported RSSI observations without first
knowing the L and T partitions.

Definition. An initiator is the node performing Sybil classifica-
tion.5 It trusts its own RSSI observations, but no others.

Definition. A receiver set, denoted by R, is a subset of identities
(R � I) whose reported RSSI observations, combined with the
initiator’s, form signalprints. Those with liars (R \ L 6¼ ;)
produce incorrect classifications and those with only truth-
tellers (R � T ) produce the correct classification.

Definition. A view, denoted by V , is a classification of identities
as Sybil and non-Sybil. Those classified as Sybil (non-Sybil)
are said to be Sybil (non-Sybil) under V and are denoted by
the subset VS (VNS). A view V obtained from the signalprints
of a receiver set R is generated by R, denoted by R 7! V
(read: R generates V ), and can be written V ðRÞ. Identities in
R are considered non-Sybil, i.e., R � VNSðRÞ. A true view,

denoted by V , correctly labels all identities, i.e., V S ¼ S and

V NS ¼ NS. Similarly, a false view, denoted by bV , incorrectly

labels some identities, i.e., bVS 6¼ S and bVNS 6¼ NS.

Definition. Incorrectly labeling non-Sybil identities as Sybil is
called collapsing.

Assumption. To clearly illustrate the impact of intentionally falsi-
fied observations, we first assume that true RSSI observations are
noise-free and thus always generate the true view. In Section 4.7,
we extend the method to handle real-world observations contain-
ing, for example, random noise and discretization error.

4.3 Approach Overview

A general separation method does not exist, because differ-
ent scenarios can lead to the same reported RSSI observa-
tions. To illustrate, consider identities I ¼ fAjBg reporting
observations such that

R � A 7! V 1 ¼ �V 1
NS ¼ AjV 1

S ¼ B
�
and

R � B 7! V 2 ¼ �V 2
NS ¼ BjV 2

S ¼ A
�

and two different scenarios x and y such that

in x; fTx ¼ AjLx ¼ Bg ¼ I and

in y; fTy ¼ BjLy ¼ Ag ¼ I:

TABLE 1
Definitions of Terms and Symbols

Definition Notes

Sets of Identities
I all participating identities
NS all non-Sybil identities I ¼ fNSjSg
S all Sybil identities
T all truthful identities I ¼ fT jLg
L all lying identities
C all conforming, or truthful, non-Sybil, identities NS ¼ fCjLNSg
LNS all lying, non-Sybil identities S ¼ fTSjLSg
TS all truthful, Sybil identities T ¼ fCjTSg
LS all lying, Sybil identities L ¼ fLNSjLSg
VNS all identities labeled non-Sybil by view V I ¼ fVNSjVSg
VS all identities labeled Sybil by view V
R (receiver set) identities used to form signalprints

Views
V (view) a Sybil-non-Sybil labeling of I
V (true view) a view that correctly labels all identities V NS ¼ NS and V S ¼ SbV (false view) a view that incorrectly labels some identities bVNS 6¼ NS and bVS 6¼ S

V ðRÞ the view generated by receiver set R

Terms
generates (R 7! V ) a receiver set generates a view
initiator node performing the Sybil classification
collapse classify a non-Sybil identity as Sybil

4. A reported RSSI observation is considered false if some signal-
prints containing it misclassify some identities.

5. All participants perform classification individually, so each is the
initiator in its own classification session.
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R � T 7! V , so V 1 and V 2 are both true views, the former in
scenario x and the latter in scenario y. In other words, iden-
tities in A could be Sybil (as claimed by B) or those in B
could be Sybil (as claimed by A). Either view could be cor-
rect; it depends on which group is lying. Consequently, no
method can always choose the correct view.

We instead develop two different approaches. The first
method, the maximum Sybil policy, simply bounds the num-
ber of misclassified identities by selecting the view report-
ing the most Sybils. This selected view must indict at least
as many as the true view, bounding the accepted Sybils by
the number of collapsed conforming identities. Collapsing
is difficult, limiting the number of incorrect classifications.

The second method, the view consistency policy, allows
complete separation, but requires that the following condi-
tions be met.

� All views correctly classify some conforming identities
(likely true because collapsing identities is difficult).

� Conforming identities outnumber lying, non-Sybils
(a major motivating factor for the Sybil attack).

This approach follows from the idea that true observations are

trivially self-consistent, while lies often contradict themselves.

We develop a notion of consistency that allows separation of

true and false observations.

4.4 Maximum Sybil Policy: Select the View
Claiming the Most Sybil Identities

In this section, we prove that the maximum Sybil policy—
selecting the view claiming the most Sybil identities—pro-
duces a classification with bounded error. The number of
incorrectly-accepted Sybil identities is bounded by the num-
ber of collapsed conforming identities.

Lemma 1. The selected view V claims at least as many Sybil iden-
tities as actually exist, i.e., jVSj � jSj.

Proof. Since the true view V claiming jSj Sybils always
exists, the selected view can claim no fewer. tu

Theorem 1. The selected view V misclassifies no more Sybil
identities than it collapses conforming identities, i.e., jVNS \
Sj 	 jVS \NSj.

Proof. Claiming the minimum jSj Sybil identities requires
that each misclassified Sybil be compensated for by a
collapsed non-Sybil identity. Formally, combining jVS [
VNSj ¼ jS [NSj with 1 yields jðVS [ VNSÞ \ Sj 	 jðS [
NSÞ \ VSj. Removing the common VS \ S from both sides
gives jVNS \ Sj 	 jVS \NSj. tu
Theorem 1 bounds the misclassifications by the attacker’s

collapsing power, jVS \NSj. Although jVS \ NSj is small
(see Section 6), one Sybil is still accepted for each conform-
ing identity collapsed. The next few sections develop a
second method that allows accurate classification, but only
when conforming nodes outnumber attackers.

4.5 View Consistency Policy: Selecting V if LNS ¼ ;
Our view consistency policy stems from the intuition that
lies told by those with incomplete information often contra-
dict each other. It is introduced here using the following
unrealistic assumption, which we remove in Section 4.6.

Restriction 1. All liars are Sybil, i.e., LNS ¼ ;, and thus all
non-Sybil identities are truthful, i.e., NS � T .

Restriction 1 endows the true view with a useful prop-
erty: all receiver sets comprising the non-Sybil identities
under the true view will generate the true view. We formal-
ize this notion of consistency as follows.

Definition. A view is view-consistent if and only if all receiver
sets comprising a subset of the non-Sybil identities under that
view generate the same view, i.e., V is view-consistent iff

8R 2 2VNS : R 7! V .

Lemma 2. Under Restriction 1, the true view is view-consistent,
i.e., 8R 2 2VNS : R 7! V .

Proof. Consider the true view V . By definition, V NS ¼ NS.

By Restriction 1, NS � T and thus, V NS � T . 8R 2
2T 7! V , so 8R 2 2V NS : R 7! V . tu
Were all false views not consistent, then consistency

could be used to identify the true view. However, a fully
omniscient attacker could theoretically generate a false, con-
sistent view by collapsing all conforming identities. In prac-
tice, the difficulty of collapsing identities prevents this. We
formalize this attacker limitation as follows.

Condition 1. All receiver sets correctly classify at least one
conforming identity, i.e., 8R 2 2I : VNSðRÞ \ C 6¼ ;.

Justification. Collapsing conforming identities requires
knowing the hard-to-predict initiator’s RSSI observa-
tions. Section 6 quantifies the probability that this condi-
tion holds.

Lemma 3. Under Condition 1, a view generated by a receiver set
containing a liar is not view-consistent, i.e., R \ L 6¼ ; implies
V ðRÞ is not view-consistent.

Proof. Consider such a receiver set R with R \ L 6¼ ;. By
Condition 1, r , VNSðRÞ \ C is not empty and since

r � C � T , r 7! V . By the definition of a liar, V ðRÞ 6¼ V
and thus R is not consistent. tu

Theorem 2. Under Restriction 1 and Condition 1 and assuming
C 6¼ ;, exactly one consistent view is generated across all
receiver sets and that view is the true view.

Proof. By Lemma 2 and Lemma 3, only the true view is con-
sistent, so we need only show that at least one receiver set
generates the true view.C 6¼ ; and thusR ¼ C 7! V . tu
This result suggests a method to identify the true view—

select the only consistent view. Restriction 1 does not hold
in practice, so we develop methods to relax it.

4.6 Achieving Consistency by Eliminating LNSLNS

Consider a scenario with some non-Sybil liars. The true
view would be consistent were the non-Sybil liars excluded
from consideration. Similarly, a false view could be consis-
tent were the correctly classified conforming identities
excluded. If the latter outnumber the former, this yields a
useful property: the consistent view over the largest subset
of identities, i.e., that with the fewest excluded, is the true
view, as we now formalize and prove.
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Condition 2. The number of conforming identities is strictly
greater than the number of non-Sybil liars, i.e., jCj >
jLNSj.

Justification. This is assumed by networks whose protocols
require a majority of the nodes to conform. In others, it
may hold for economic reasons—deploying as many
nodes as the conforming participants is expensive.

Condition 3. Each receiver set either correctly classifies at
least jLNSj þ 1 conforming identities as non-Sybil or the
resulting view, when all correctly classified conforming

identities are excluded, is not consistent, i.e., 8R 2 2I :

ðjVNSðRÞ \ Cj � jLNSj þ 1Þ _ ð9Q 2 2VNSðRÞnC : V ðQÞ 6¼
V ðRÞÞ. Note that this implies Condition 2.

Justification. This is an extension of Condition 1. Section 6
quantifies the probability that it holds.

Lemma 4. Under Condition 2 and Condition 3, the largest subset
of I permitting a consistent view is I n LNS.

Proof. I n LNS permits a consistent view, per Lemma 2. Let

ER , bVNSðRÞ \ C be the set of correctly classified con-
forming nodes for a lying receiver set R, i.e., R \ L 6¼ ;.
I n ER is the largest subset possibly permitting a con-
sistent view under R. By Condition 3, 8R : jERj �
jLNSj þ 1. tu

Theorem 3. Under Condition 2 and Condition 3, the largest sub-
set of I permitting a consistent view permits just one consis-
tent view, the true view.

Proof. This follows directly from Lemma 4 and Lemma 2. tu

In the next section, we extend the approach to handle the
noise inherent to real-world signalprints.

4.7 Extending Consistency to Handle Noise

Noise prevents true signalprints from always generating
the true view. Observing from prior work that the mis-
classifications are bounded (e.g., more than 99 percent of
Sybils detected with fewer than 5 percent of conforming
identities collapsed [15], [17]), we extend the notion of
consistency as follows.

Definition. Let gn be the maximum fraction6 of non-Sybil identi-
ties misclassified by a size-n receiver set. Prior work suggests
g4 ¼ 0:05 is appropriate (for jCj > 20) [15], [17].

Definition. A view is gn-consistent if and only if all size-n
receiver sets that are subsets of the non-Sybil identities under

that view generate a gn-similar view. Two views V 1 and V 2

are gn-similar if and only if

jV 1
NS \ V 2

NSj
jV 1

NS n V 2
NSj

>
1� 2gn

gn

� �^ jV 1
NS \ V 2

NSj
jV 2

NS n V 1
NSj

>
1� 2gn

gn

� �
:

This statement captures the intuitive notion that V 1
NS and V 2

NS

should contain the same identities up to differences expected
under the gn bound. A view is gn-true if it is gn-similar to the
true view.

Lemma 5. Under Restriction 1, the view generated by any truth-
ful receiver set of size n is gn-consistent.

7

Proof. Consider two views V 1 and V 2 generated by con-
forming receiver sets. Each correctly classifies at least

ð1� gnÞ of the non-Sybil identities, so jV 1
NS \ V 2

NSj �
ð1� 2gnÞjNSj. Each misclassifies at most gn of the non-

Sybil identities, so jV 1
NS n V 2

NSj 	 gnjNSj and similar for

V 2
NS n V 1

NS. The ratio of these bounds is the result. tu
Substituting g-consistency for pure consistency, Section 3

still holds with high (albeit different) probability, quantified
in Section 6. An analogue of Section 3 follows.

Theorem 4. Under Condition 3, the gn-consistent view of the
largest subset of I permitting such a view is gn-true.

In Section 5 we describe an efficient algorithm to identify
the largest subset permitting a g-consistent view and thus
the correct (up to errors expected due to signalprint noise)
Sybil classification.

5 EFFICIENT IMPLEMENTATION OF THE

SELECTION POLICIES

Both the maximum Sybil and view consistency policies
offer ways to select a view, either the one claiming the
most Sybils or the largest one that is gn-true, but brute-

force examination of all 2jIj receiver sets is infeasible.

Instead, we describe OðjIj3Þ algorithms for both policies.
In summary, both start by generating OðjIjÞ candidate
views (Algorithm 1). For the maximum Sybil policy, the
one claiming the most Sybil identities is trivially identi-
fied. For the view consistency policy, Algorithm 2 is used
to identify largest gn-consistent view.

Algorithm 1. Choose the Receiver Sets to Consider

Require: i0 is the identity running the procedure
Require: n is the desired receiver set size
1: S  ;
2: for all i 2 I do
3: R fi0; ig
4: for cnt ¼ 3! n do
5: R R [ fRandElementðVNSðRÞÞg
6: end for
7: S  S [ fRg
8: end for
9: return S " with high probability, S con-

tains a truthful receiver set

5.1 Candidate Receiver Set Selection

The only requirement for candidate receiver set selection
is that at least one of the candidates must be truthful.
Algorithm 1 selects jIj; size-n (we suggest n ¼ 4) receiver
sets of which at least one is truthful with high probability.
As illustrated in Fig. 5, the algorithm starts with all jIj

6. gn is an upper bound on the total fraction misclassified, not the
probability that an individual identity is misclassified.

7. This assumes that the false negative bound is negligible. If it is
not, a similar notion of g,s-consistency, where s is the false negative
bound, can be used. In practice s is quite small [15], [17], so simple
gn-consistency is fine.
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size-2 receiver sets (lines 2–3) and builds each up to the
full size-n by iteratively (line 4) adding a randomly
selected identity from those indicated to be conforming
at the prior lower dimensionality (line 5). At least jCj of
the initial size-2 receiver sets are conforming and after
increasing to size-n, at least one is still conforming with
high probability:

1� 1�
Yn�1
m¼2

ð1� gmÞ � jCj � ðm� 1Þ
jLNSj þ ð1� gmÞ � jCj � ðm� 1Þ

 !jCj
:

Fig. 6 shows this probability as a function of the number
of conforming identities (jCj) and the number of non-Sybil
liars (jLNSj). We use size-4 signalprints (n ¼ 4) and
g4 ¼ 0:05, based on previous evaluation results [15], [17]. In
the shaded areas, some required condition is not met. Recall
that Algorithm 1 requires jCj > n, so that at least one size-n
receiver set composed purely of conforming nodes can be
formed. The view consistency policy requires jCj > jLNSj
(Condition 2).

The signalprint threshold for this process is chosen to
eliminate (nearly) all false negatives, because the goal is to
minimize the malicious-to-conforming ratio; false positives
are harmless during the generation of candidate views. The
complexity of a straightforward implementation is OðjIj3Þ.
Section 10 further discusses the runtime.

5.2 Finding the Largest gngn-Consistent View

Given the jIj candidate receiver sets, the next task is identify-
ing the one generating a gn-true view, which, pursuant to
Theorem 4, is that permitting the largest subset of I to be

gn-consistent. Checking consistency by examining all 2jVNSj

receiver sets is infeasible, so we make several observations

leading to the OðjIj3Þ Algorithm 2. For each candidate
receiver set (line 2), we determine howmany identities must
be excluded for the view to be gn-consistent (lines 3–17). The
view excluding the fewest is gn-true and the desired classifi-
cation (line 22).

Algorithm 2. Find Receiver Set Permitting the Largest
gn-Consistent Subset

Require: S is the set of receivers sets generated by Algorithm 1

Require: VNSðRÞ for each R 2 {size-2 receiver sets} computed
by Algorithm 1

Require: s is the initiator running the algorithm
1: ðC;RmaxÞ  ð1; nullÞ
2: for all R 2 S do

3: Compute RSSI ratio for each Sybil set in VSðRÞ
4: c 0
5: for all i 2 VNSðRÞ do
6: e 0
7: n number of identities whose RSSI ratios reported

by i do not match that for R

8: if jVNSðRÞjþnn < 1�2gn
gn

then
9: e 1
10: end if

11: if V ðRÞ and V ðfi; sgÞ are not g2-similar then
12: e 1
13: end if
14: if e ¼ 1 then
15: c cþ 1 " exclude i
16: end if
17: end for
18: if c < C then

19: ðC;RmaxÞ  ðc; RÞ " new largest g-consistent
subset found

20: end if
21: end for
22: returnRmax

The crux of the algorithm is lines 3–17, which use the fol-
lowing observations to efficiently determine which identi-
ties must be excluded.

1) Adding an identity to a receiver set can change
the view in one direction only—an identity can go
from Sybil to non-Sybil, but not vice versa—because

Fig. 6. Contours of probability that at least one of the receiver sets from
Algorithm 1 is conforming. For small jCj and relatively large jLNSj the
probability can be increased by building 2 � jIj or 3 � jIj or more receiver
sets instead. In the shaded areas, conditions required by either the con-
sistency policy or by Algorithm 1 are not met.

Fig. 5. Illustration of Algorithm 1. All jIj size-2 receiver sets are increased
to size-4 by iteratively adding a random identity from those labeled non-
Sybil by the current set. With high probability, at least one of the final
sets will contain only conforming identities.
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uncorrelated RSSI vectors cannot become correlated
by increasing the dimension.8

2) For identities a and b, R [ fag 7! V ðRÞ and R [
fbg 7! V ðRÞ implies R [ fa; bg 7! V ðRÞ because a
and b must have the same RSSI ratios for the Sybils
as R.

From these observations, we determine the excluded identities

by computing, for each identity in VSðRÞ, the RSSI ratio with

an arbitrary sibling (line 3) and comparing against those

reported by potential non-Sybils in VNSðRÞ (line 7). If the num-

ber not matching is too large (line 8), the view is not gn-consis-

tent and the identity is excluded (line 15). It is also excluded if

the receiver set consisting of just itself and the initiator is not

g2-similar to R (line 11).

5.3 Runtime in the Absence of Liars

In a typical situation with no liars, the consistency algorithm
can detect the Sybils in OðjIj2Þ time. Since all identities are
truthful, any chosen receiver set will be gn-consistent with
no exclusions—clearly the largest possible—and thus the
other jIj � 1 also-truthful receiver sets need not be checked.

With lying attackers present, the overall runtime is OðjIj3Þ,
as each algorithm takes OðjIj3Þ time.

6 CLASSIFICATION PERFORMANCE AGAINST

OPTIMAL ATTACKERS

Both view selection policies depend directly on the unpre-
dictability of RSSIs, because collapsing identities requires
knowing the observations of the initiator, as explained in
Section 4.1. An intelligent attacker can attempt educated
guesses, resulting in some successful collapses. In this sec-
tion, we evaluate the two selection policies against the opti-
mal attackers, as defined in Sections 6.2 and 6.3.

6.1 RSSI Unpredictability

Accurately guessing RSSIs is difficult because the wireless
channel varies significantly with small displacements in
location and orientation (spatial variation) and environmental
changes over time (temporal variation) [13], [25]. Pre-charac-
terization could account for spatial variation, but would be
prohibitively expensive at the needed spatial and orientation
granularity (6 cm [26] and 3degree for our test devices).

We empirically determined the RSSI variation for
human-carried smartphones by deploying experimental
phones to eleven graduate students in two adjacent offices
and measuring pairwise RSSIs for fifteen hours. The
observed distribution of deviations,9 shown in Fig. 7, is
roughly normal with a standard deviation of 7.3 dBm, in
line with other real-world measurements for spatial and ori-
entation variations (4 dBm to 12dBm and 5.3 dBm [13]). We
use this distribution to model the attacker uncertainty of
RSSIs, corresponding to an attacker who accumulates
knowledge of pairwise RSSIs by observing values reported
in past tests.

6.2 Optimal Attacker Strategy—Maximum
Sybil Policy

Theorem 1 shows that the performance of the maximum
Sybil policy is inversely related to the number of collapsed
non-Sybil identities. Therefore, the optimal attacker tries to
collapse as many as possible. We make two observations
about this goal.

1) More distinct guesses increase the probability of suc-
cess, so an optimal attacker partitions its (mostly
Sybil) identities, with each group making a different
guess.

2) Smaller group size increases the number of groups,
but decreases the probability that the group is con-
sidered—recall that Algorithm 1 generates only jIj of
the possible 2jIj candidate receiver sets.

Consequently, there is an optimal group size that maxi-
mizes the total number of groups (guesses) produced by
Algorithm 1, which we obtained via Monte Carlo simula-
tions. We model the initiator’s RSSI observation as a ran-
dom vector whose elements are drawn i.i.d. from the
Gaussian distribution in Fig. 7. Given the total number of
guesses, the best choices are the vectors with the highest
joint probabilities. The performance against this strategy is
discussed in Section 6.4.

6.3 Optimal Attacker Strategy—View
Consistency Policy

The view consistency policy depends on Condition 3 hold-
ing, i.e., all consistent views must correctly classify at least
jLNSj þ 1 conforming identities. In this section we quantify
the probability that it holds against an optimal attacker. To
break Condition 3, an attacker must generate a consistent
view that collapses at least jCj � jLNSj conforming identi-
ties. We make three observations about the optimal attacker
strategy for this goal.

1) Collapsing jCj � jLNSj identities is easiest with
larger jLNSj. Thus, the optimal attacker uses only
one physical node to claim Sybils—the others just lie.

2) For a particular false view to be consistent, all sup-
posedly non-Sybil identities must indict the same
identities, e.g., have the same RSSI guesses for
the collapsed conforming identities. The optimal
attacker must divide its (mostly Sybil) identities into
groups, each using a different set of guesses.

3) More groups increases the probability of success, but
decreases the number of Sybils actually accepted, as
each group is smaller.

Fig. 7. Distribution of RSSI variations in real-world deployment.

8. This is not true for low dimension receiver sets severely affected
by noise, but is for the size-ðn > 4Þ sets considered here.

9. For each pair of transceivers, we subtracted the mean of all their
measurements to get the deviations and took the distribution of the
pairwise deviations.
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We assume the optimal attacker wishes to maximize the proba-

bility of success and thus uses minimum-sized groups (three

identities, for size-4 signalprints).

For each group, the attacker must guess RSSI values for
the conforming identities with the goal of collapsing at least

s , jCj � jLNSj of them. There are ðjCjs Þ such sets, and the

optimal attacker guesses values that maximize the probabil-
ity of at least one (across all groups) being correct. The first
group is easy; the jCj guesses are simply the most likely val-
ues, i.e., the expected values for the conforming identities’
RSSIs, under the uncertainty distribution.

For the next (and subsequent) groups, the optimal
attacker should pick the next most likely RSSI values for
each of the ðjCjs Þ sets. However, the sets share elements (only
jCj RSSIs are actually guessed), so the attacker must deter-
mine the most probable values of the sets that are compati-
ble. For example, the second most likely values for the set
(a, b) are (�78, �49 dBm), and the second most likely values
for the set (a, c) are (�82,�54 dBm). These two sets of values
are incompatible, as one cannot simultaneously guess both
�78 and �82 dBm for node a.

The above problem is non-trivial, but an attacker could
conceivably solve it. In order to model the strongest
possible attack, we assume that all sets of values are com-
patible. For example, we assume one group can simulta-
neously guess (�78, �49 dBm) for the set (a, b), and (�82,
�54 dBm) for the set (a, c). Any realizable attack would
use an additional group to try both guesses. Thus, this
assumption models an attack that, with the same set of
groups, has a higher success probability than any realiz-
able attack. This leads to a conservative lower bound on
the probability that the attacker fails—any feasible, opti-
mal strategy is less likely to succeed.

Fig. 8 shows contours of this lower bound on the proba-
bility that Condition 3 holds as a function of jCj and jLNSj,
obtained via Monte Carlo simulations of the super-optimal
attacker. The initiator’s RSSI observation is modeled as a
random vector, whose elements are drawn i.i.d. from the
Gaussian distribution in Fig. 7. The jCj 	 jLNSj region is
shaded, because the view consistency policy fails there

(recall Condition 2). When the conforming nodes outnum-
ber the attacker nodes by at least 1:5�—the expected case in
real networks—the condition holds with very high probabil-
ity. In practice, it will hold with even higher probability, as
this is a lower bound.

6.4 Performance Comparison of Both Policies

We use Monte Carlo simulations to compare the perfor-
mance of the two policies against the optimal attackers,
quantified as the final Sybil ratio, the fraction of accepted
identities that are Sybil. We model the attacker’s knowledge
of the initiator’s RSSIs as a random vector whose elements
are drawn i.i.d. from the Gaussian distribution in Fig. 7,
which conservatively assumes fine-grained temporal and
spatial characterization (see Section 6.1). We expect real-
world attackers to have less knowledge, leading to even
better classification performance.

Our procedure for generating candidate receiver sets
(Algorithm 1) works best when conforming nodes outnum-
ber physical attackers. This condition should normally hold
in real-world networks (it is the major motivation for a Sybil
attack), so for both policies, we report results assuming that
it does.

Fig. 9 graphs the final Sybil ratio of the maximum Sybil

policy, which roughly corresponds to the ratio of collapsed

conforming nodes (jVS\NSj
jCj ). The performance does not

depend on the number of physical attackers. The Sybil ratio
decreases to 0.05–0.2 when jCj > 10. When jCj < 10, the
Sybil ratio is high (0.2–0.5), despite elimination of most Sybil
identities (92–99 percent). This behavior is due to the ease of
guessing low-dimension random vectors.

Fig. 10 shows the final Sybil ratio of the consistency pol-
icy. Again, the jCj 	 jLNSj region is shaded as the policy
simply fails in this case. Performance increases rapidly with
the ratio of conforming nodes to physical attackers—recall
the attacker needs to collapse jCj � jLNSj identities to break
Condition 3. For example, the final Sybil ratio drops below

10�6 when jCj
jLNSjþ1 � 1:6. As the collapse rate is usually

below 0:2 (see Fig. 9 when jCj > 10), we observe good per-
formance when jCj � jLNSj � 0:2jCj (below the 0.05 con-

tour). The dashed line (roughly jCj
jLNSjþ1 ¼ 1:2) indicates the

situations where both policies perform equally. Below it,
the consistency policy performs better than the maximum
Sybil policy and above it does worse.

Fig. 8. Contours of a lower bound on the probability that Condition 3
holds under an optimal attacker strategy with the attacker’s knowledge
of RSSIs modeled as a normal distribution with standard deviation
7.3 dBm.

Fig. 9. The final Sybil ratio, i.e., fraction of accepted identities that
are Sybil, produced by the maximum Sybil policy against an optimal
attacker strategy.
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The view consistency policy is superior when conforming
nodes are expected to outnumber attacker nodes by at least
1:2�, the common case in urban environments. The maxi-
mum Sybil policy remains viable when the number of physi-
cal attackers is comparable to (or even larger than) that of the
conforming nodes. We suggest users of the Mason test con-
sider their application knowledgewhen choosing a policy.

7 DETECTING MOVING ATTACKERS

A mobile attacker can defeat signalprint comparison by
changing locations or orientations between transmissions to
associate distinct signalprints with each Sybil identity.
Instead of restricting the attack model to only stationary
devices, we protect against moving attacks by detecting
moving nodes. Moving nodes are treated as non-conform-
ing, in essence, and will not be able to participate in network
protocols until stationary enough to be tested for Sybilness
again. Fortunately, in the networks we consider, most con-
forming nodes (e.g., human-carried smartphones and lap-
tops) are stationary over most short time-spans (1 to 2min),
due to human mobility habits. Thus, multiple transmissions
should have the same signalprints [15]. From this observa-
tion, we develop a protocol to detect moving attackers.

Again, the lack of trusted observations is troublesome.
Instead of comparing signalprints, we compare the ini-
tiator’s observations: all transmissions from a conforming
node should have the same RSSI. As shown in Section 9,
this simple criterion yields acceptable detection.

The protocol collection phase (Fig 2a) is extended to
request multiple probe packets (e.g., 14) from each identity
in a pseudo-random order (see Section 8.1). During the
classification phase (Fig. 2c) each participant rejects any
identity with a large RSSI variation across its transmissions
(specifically, a standard deviation larger than 2.5 dBm). In
essence, an attacker is challenged to quickly and precisely
switch between the multiple positions associated with
its Sybil identities (6 cm location precision according to
coherence length theory [26] and 3degree orientation preci-
sion according to our measurements).

Fig. 11 plots the required response time for an attacker
to pass the challenge. Random sequences of probe
requests are generated via Monte Carlo simulations and
the required response time is calculated accordingly.
Given human reaction times [27], reliably mounting such
an attack would require specialized hardware—precise
electromechanical control or beam steering antenna
arrays—that is outside our attack model and substantially
more expensive to deploy than compromised commodity
devices.

8 THE MASON TEST

This section describes the full Mason test protocol, an imple-
mentation of the concepts introduced in the previous sec-
tions. There are four main requirements on the protocol.

1) Conforming neighbors must be able to participate.
That is, selective jamming of conforming identities
must be detectable.

2) Probe packets must be transmitted in pseudo-
random order. Further, each participant must be
able to verify that no group of identities controlled
the order.

3) Moving identities must be rejected. To save energy
and time, conforming nodes that are moving when
the protocol begins should not participate.

4) Attackers must not know the RSSI observations of
conforming identities when constructing lies.

We assume a known upper bound on the number
of conforming neighbors, i.e., those within the one-hop
transmission range. In most applications, a bound in the
hundreds (we use 400 in our experiments) will be accept-
able. If more identities attempt to participate, the protocol
aborts and no classification is made. This appears to open
a denial-of-service attack. However, we do not attempt to
prevent, instead only detect, DOS attacks, because one
such attack—simply jamming the wireless channel—is
unpreventable (with commodity hardware). See Section
10 for more discussion.

Fig. 10. Contours showing the final Sybil ratio for the view consistency
policy against an optimal attacker strategy. The dashed line corresponds
to situations where this policy has the same performance as the
maximum Sybil policy.

Fig. 11. Contours showing the response time (in ms, 99th percentile)
to precisely switch between two positions required to defeat the
challenge-response moving node detection protocol .
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The rest of this section describes the two components of
the protocol: collection of RSSI observations and Sybil classi-
fication. We assume one identity, the initiator, starts the pro-
tocol and leads the collection, but all identities still
individually and safely perform Sybil classification.

8.1 Collection of RSSI Observations

Phase I: Identity collection. The first phase gathers participat-
ing neighbor identities, ensuring that no conforming identi-
ties are jammed by attackers. The initiator sends a
REQUEST message stating its identity, e.g., a public key. All
stationary neighbors respond with their identities via
HELLO-I messages, each ACKed by the initiator. Unac-
knowledged HELLO-Is are re-transmitted. The process ter-
minates when the channel is idle—indicating all HELLO-I’s
were received and ACKed. If the channel does not go idle
before a timeout (e.g., 15 seconds), the protocol aborts
because an attacker may be selectively jamming some
HELLO-Is. The protocol also aborts if too many identities
join, e.g., 400.

Phase II: Randomized broadcast request. The second phase
is the challenge-response protocol to collect RSSI observa-
tions for motion detection and Sybil classification. First,
each identity contributes a (difficult to predict) random
value;10 all are hashed together to produce a seed to gen-
erate the random sequence of broadcast requests issued
by the initiator. Specifically, it sends a TRANSMIT mes-
sage to each participant in the random sequence, who
must quickly broadcast a signed HELLO-II, e.g., within
10ms in our implementation.11 Each participant records
the RSSIs of the HELLO-II messages it hears. Some identi-
ties will not hear each other; this is acceptable because the
initiator needs observations from only three other con-
forming identities. jIj � s requests are issued, where s is
large enough to ensure a short minimum duration
between consecutive requests for any two pairs of nodes,
e.g., 14 in our tests. An identity that fails to respond in
time might be an attacker attempting to change physical
position and is rejected.

In some applications, it might be desirable to meet the
additional requirement that attackers be unaware of their
positions in the challenge-response sequence until chal-
lenged. This could be achieved by allowing the initiator
to use a self-generated random sequence that cannot be
verified by other participants. However, if this were done
only the initiator would be able to safely use the test
results.

Phase III: RSSI observations report. In the third phase, the
RSSI observations are shared. First, each identity broadcasts
a hash of its observations. Then the actual values are shared.
Those not matching the respective hash are rejected, pre-
venting attackers from using the reported values to fabricate
plausible observations. The same mechanism from Phase 1
is used to detect selective jamming.

8.2 Sybil Classification

Each participant performs Sybil classification individually.
First, the identity verifies that its observations were not
potentially predictable from those reported in prior rounds,
possibly violating Condition 3. Correlation in RSSI values
between observations decreases with motion between obser-
vations, as shown by our experiments (Fig. 12). Thus, a node
only performs Sybil classification if it has strong evidence
that the current observations are uncorrelated with prior
ones,12 i.e., it has observed an acceleration of at least 2m/s2.

Classification is a simple application of the methods of
Sections 7 and 5. Each identity with an RSSI variance across
its multiple broadcasts higher than a threshold is rejected.
Then, Algorithm 1 and Algorithm 2 are used to identify a
g-true Sybil classification over the remaining, stationary
identities.

9 PROTOTYPE AND EVALUATION

We implemented the Mason test as a Linux kernel module
and tested its performance on HTC Magic Android smart-
phones in various operating environments. It sits directly
above the 802.11 link layer, responding to requests in inter-
rupt context, to minimize response latency for the
REQUEST–HELLO-II sequence (12ms roundtrip time on our
hardware). The classification algorithms are implemented in
Python. Unlike the described protocol, mobile conforming
nodes participated in all tests (i.e., nodes did not monitor
their own motion and decline to participate when moving),
giving us data to tune the motion filter and characterize the
impact of nodemotion on the classifier performance.

The goal of this section is to evaluate the overall perfor-
mance of our system in normal settings, which is mainly
dependent on the wireless environment. We therefore eval-
uated the Mason test in four different environments.

Office I Eleven participants in two adjacent offices for 15
hours.

Office II Eleven participants in two adjacent offices in a
different building for 1 hour, to determine
whether performance varies across similar, but
non-identical environments.

Cafeteria Eleven participants in a crowded cafeteria during
lunch. This was a rapidly-changing wireless

Fig. 12. RSSI correlation as a function of the maximum device accelera-
tion between observations.

10. Even if attackers do not comply, conforming participants can
verify that their own random submissions resulted in a random
sequence and therefore trust the test results.

11. 10ms is larger than the typical roundtrip time for 802.11b with
packets handled in interrupt context for low-latency responses. These
packets can be signed ahead of time and cached—signatures do not
need to be computed in the 10ms interval.

12. Note that although we did not encounter this case in our experi-
ments, it is conceivable that some devices will return to the same loca-
tion and orientation after motion.
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environment due to frequent motion of the cafete-
ria patrons.

Outdoor Eleven participants meeting in a cold, open,
grassy courtyard for 1 hour, capturing the out-
door environment. Participants moved frequently
to stay warm.

In each environment, we conducted multiple trials with one
Sybil attacker13 generating 4, 20, 40, and 160 Sybil identities.
The ratio of conforming to attacking nodes is held constant,
as it does not affect performance (assuming at least one true
view is generated by Algorithm 1). The gathered traces
were split into testing and training sets.

We do not study the system performance under collaps-
ing attacks here, as it also depends on the number of con-
forming and attacking nodes, and we have too few
experimental devices to meaningfully vary those counts. In
Section 6 we independently evaluate the performance
against such attacks, using Monte Carlo simulations to vary
both numbers from 5 to 200.

9.1 Selection and Robustness of Thresholds

The training data were used to determine good motion filter
and signalprint distance thresholds, shown in Table 2.

The motion filter threshold was chosen such that at least
95 percent of the conforming participants (averaged over
all training rounds) in the low-motion Office I environment
would pass. This policy ensures that conforming smart-
phones, which are usually left mostly stationary, e.g., on
desks, in purses, or in the pockets of seated people, will
usually pass the test. Devices exhibiting more motion (i.e.,
a standard deviation of RSSIs at the initiator larger than
2.5 dBm)—as would be expected from an attacker trying to
defeat signalprint detection—will be rejected.

The signalprint distance thresholds were chosen by eval-
uating the signalprint classification performance at various
possible values. Fig. 13 shows the ROC curves for size-4
receiver sets (a “positive” is an identity classified as Sybil).
Note that the true positive and false positive rates consider
only identities that passed the motion filter, in order to iso-
late the effects of the signalprint distance threshold. The
curves show that a good threshold has performance in line
with prior work [15], [17], as expected.

In all environments, the knees of the curves correspond
to the same thresholds, suggesting that these values can be
used in general, across environments. A possible explana-
tion is that despite environment differences, the signalprint
distance distributions for stationary Sybil siblings are identi-
cal. All results in this paper use these same thresholds,
shown in Table 2.

9.2 Classification Performance

The performance of the full Mason test—motion filtering
and signalprint comparison—is shown in the confusion
matrices in Fig. 14. Note that we count all rejected identi-
ties, including both Sybil and moving identities, as Sybil.
Many tests were conducted in each environment, so aver-
age percentages are shown instead of absolute counts. To
evaluate the performance, we consider two standard clas-
sification metrics derived from these matrices, sensitivity
(percentage of Sybil identities correctly identified) and
specificity (percentage of conforming identities correctly
identified).

Note that 100 percent sensitivity is not necessary. Most
protocols that would use Mason require a majority of the
participants to be conforming. The total number of identities
is limited (e.g., to 400), so rejecting most of the Sybils and
accepting most of the conforming identities is sufficient to
meet this requirement.

Table 3 shows the performance for all four environments.
The Mason test performs best in the low-motion indoor
environments, with over 99.5 percent sensitivity and over
85 percent specificity. The sensitivity in the cafeteria envi-
ronment is just 91.4 percent, likely due to the rapid and fre-
quent changes in the wireless environment resulting from
the motion of cafeteria patrons. In the outdoor environment,
with all participants (including attackers) moving, the sensi-
tivity is 95.9 percent, and the specificity is 61.1 percent with
all the false rejections caused by motion.

The outdoor experiment is an extreme case where we pay
the cost of rejecting moving conforming nodes to defeat
motion attacks. The result is acceptable because our goal is
to produce a set of non-Sybil identities to be used safely by
other protocols: accepting a swarm of moving Sybil identi-
ties is much worse than temporarily rejecting some con-
forming nodes that are currently moving.

An identity is classified as Sybil for three reasons: it has
similar signalprints to another, the initiator has too few
RSSI reports to form a signalprint, or it is in motion. Fig. 15
shows the relative prevalence of these three causes for
falsely rejecting conforming nodes. Not surprisingly, the

TABLE 2
Thresholds for Signalprint Comparison and Motion Filtering

Name Threshold (dBm)

Signalprint Distance dimension-2 0.85
dimension-3 3.6
dimension-4 1.2

RSSI Standard Deviation 2.5

Fig. 13. ROC curve showing the classification performance of signalprint
comparison in different environments for varying distance thresholds.
Only identities that passed the motion filter are considered. The knees of
the curves all correspond to the same thresholds, suggesting that the
same value can be used in all locations.

13. As discussed in Section 4 and Section 6, additional physical
nodes are best used as lying, non-Sybils.
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first cause—collapsing—is rare, occurring only in the first
office environment. Missing RSSI reports is an issue only in
the environments with significant obstructions (the indoor
offices) and accounts for about half of these false rejections.
In the open cafeteria and outdoor environments, all false
rejections are due to participant motion.

9.3 Overhead Evaluation

Figs. 16a and 16b show the runtime and energy overhead
for the Mason test collection phase, with the stacked bars
separating the costs by sub-phase. The protocol runs infre-
quently (once every hour is often sufficient), so runtimes of
10–90 seconds are acceptable. Likewise, smartphone energy
consumption is acceptable, with the extreme 18 J consump-
tion for 400 identities representing 0.01 percent of the
17;500 J capacity of a typical smartphone battery.

Fig. 16c show the classification phase overheads for
2–100 identities. Classification consumes much less energy
than collection, so its overhead is also acceptable. For more
than 100 participants, costs become excessive due to the

Oðn3Þ scaling behavior.14 Limiting participation to 100 iden-
tities may be necessary for energy-constrained devices, but
will generally not reduce performance because having 100
non-Sybil, one-hop neighbors is rare.

The periodic accelerometer sampling used to measure
motion between Mason test rounds consumes 5.2 percent of
battery capacity in an 18h period of use before recharging.

10 DISCUSSION

Sybil classification from untrusted observations is difficult
and the Mason test is not a silver bullet. Not requiring
trusted observations is a significant improvement, but the
test’s limitations must be carefully considered before
deployment. As with any system intended for real-world
use, some decisions try to balance system complexity and
potential security weaknesses. In this section, we discuss
these trade-offs, limitations, and related concerns.

High computation time. The collection phase time is gov-
erned by the 802.11b-induced 12ms per packet latency, and
the classification runtime grows quickly with the number
of identities, OðjIj3Þ. Although typically fast (e.g., <5 s for
5–10 nodes), the Mason test is slower in high density areas
(e.g., 40 s for 100 nodes). However, it should be run infre-
quently, e.g., once or twice per hour. Topologies change
slowly (most people change locations infrequently), and
many protocols requiring Sybil resistance can handle the

lag—they need only know a subset of the current non-Sybil
neighbors.

Easy denial-of-service attack. An attacker can force the pro-
tocol to abort by creating many identities or jamming trans-
missions from the conforming identities. We cannot on
commodity 802.11 devices solve another denial-of-service
attack—simply jamming the channel—so defending against
these more-complicated variants is ultimately useless. Most
locations will at most times be free of such attackers—the
Mason test provides a way to verify this condition, reject
any Sybils, and let other protocols operate knowing they are
Sybil-free.

Requires several conforming neighbors. The Mason test
requires true RSSI observations from some neighbors
(e.g., 3) and is easily defeated otherwise. Although a
detailed treatment is beyond the scope of this paper, we
do note that protocols incorporating the Mason test can
mitigate this risk by (a) a priori estimation of the distri-
bution of the number of conforming neighbors and (b)
careful composition of results from multiple rounds to
bound the failure probability.

Limit on total identities. This limit (e.g., 400) is unfortu-
nately necessary to detect when conforming nodes are being
selectively jammed, while still keeping the test duration
short enough that most conforming nodes remain station-
ary. We believe that most wireless networks have typical
node degrees well below 400.

Fig. 14. Confusion matrices detailing the classifier performance in the four environments. S is Sybil and C is conforming. Multiple tests were run in
each environment, so mean percentages are shown instead of absolute counts.

TABLE 3
Classification Performance

Environment Sensitivity (%) Specificity (%)

Office I 99.6 96.5
Office II 100.0 87.7
Cafeteria 91.4 86.6
Outdoor 95.9 61.1

Fig. 15. Relative frequencies of the three causes of false positives.14. A native C implementation might scale to 300–400 identities.
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Messages must be signed. Packets sent during the collection
phase are signed, which can be very slow with public key
schemes. However, this is easily mitigated by (a) pre-
signing the packets to keep the delay off the critical path or
(b) using faster secret-key-based schemes.

Pre-characterization reveals RSSIs. An attacker could theo-

retically improve its collapsing probability by pre-character-

izing the wireless environment. We believe such attacks are

impractical because the required spatial granularity is about

6 cm, the device orientation is still unknown, and environ-
mental changes (e.g., people moving) reduces the useful-

ness of prior characterization.

Prior rounds reveal RSSI information. The protocol defends

against this. Conforming nodes do not perform classifica-

tion if their RSSI observations are correlated with the prior

rounds (see Section 8.2).
High false positive rates. With the motion filter, the false

positive rate can be high, e.g., 20 percent of conforming
identities rejected in some environments. We believe this
is acceptable because most protocols requiring Sybil
resistance need only a subset of honest identities. For
example, if for reliability some data is to be spread
among multiple neighbors, it is acceptable to spread it
among a subset chosen from 80 percent, rather than all,
of the non-Sybils.

11 CONCLUSION

We have described a method to use signalprints to detect
Sybil attacks in open ad hoc and delay-tolerant networks
without requiring trust in any other node or authority. We
use the inherent difficulty of predicting RSSIs to separate
true and false RSSI observations reported by one-hop neigh-
bors. Attackers using motion to defeat the signalprint tech-
nique are detected by requiring low-latency retransmissions
from the same position.

The Mason test was implemented on HTC Magic smart-
phones and tested with human participants in three envi-
ronments. It eliminates 99.6–100 percent of Sybil identities
in office environments, 91 percent in a crowded high-
motion cafeteria, and 96 percent in a high-motion open out-
door environment. It accepts 88–97 percent of conforming
identities in the office environments, 87 percent in the cafe-
teria, and 61 percent in the outdoor environment. The vast
majority of rejected conforming identities were eliminated
due to motion.
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