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Abstract— In the past, dynamic voltage and frequency scaling (DVFS)

has been widely used for power and energy optimization in embedded

system design. As thermal issues become increasingly prominent, we pro-

pose design-time thermal optimization techniques for embedded systems.

By carefully planning DVFS at design time, our techniques proactively

optimize system thermal profile, prevent run-time thermal emergencies,

minimize cooling costs, and optimize system performance. To the best of

our knowledge, this is the first work addressing embedded system design-

time thermal optimization using DVFS. We formulate minimization of

application peak temperature in the presence of real-time constraints as

a nonlinear programming problem. This provides a powerful framework

for system designers to determine a proper thermal solution and

provide a lower bound on the minimum temperature achievable by

DVFS. Furthermore, we examine the differences between optimal energy

solutions and optimal peak temperature solutions. Experimental results

indicate that optimizing energy consumption can lead to unnecessarily

high temperature. Finally, we propose a thermal-constrained energy

optimization procedure to minimize system energy consumption under a

constraint on peak temperature.

I. INTRODUCTION

Multiprocessor or multi-core architectures are popular in complex

embedded systems, which range from mobile consumer electronics

to high-performance game consoles. With the technology evolution,

the demand for increased performance and reduced size leads to

increasing power density and temperature [1]. Chip temperature has

significant impact on performance, reliability, power consumption,

as well as cooling and packaging costs. Thermal-aware design is

difficult. Designing a chip and package for the worst-case power

consumption scenario may be prohibitively expensive. Therefore,

most real cooling solutions are designed for the Thermal Design

Power (TDP), which is usually less than 15% of the worst case power

consumption [2]. Thanks to material heat capacity, the processor can

safely consume more power than the TDP for a brief period of time.

However, if the TDP is exceeded for an extended period of time, the

chip temperature may reach a dangerous level, triggering a sensor-

driven hardware mechanism to reduce power consumption. These

techniques are known as Dynamic Thermal Management (DTM),

which mainly consists of fetch toggling [3], DVFS [4], and activity

migration [5]. In the future, the discrepancy between TDP and the

worst case value will increase and DTM will be widely used.

Although DTM techniques can bound chip temperature at the cost

of some run-time performance degradation, there is not yet a clear

way to choose a proper TDP for an embedded system at design time,

even though application execution patterns and real-time constraints
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Fig. 1. Voltage selection formulation.

are already known. The TDP of a DVFS-enabled processor for

worst-case general-purpose applications may be too pessimistic for

a specific embedded system design, leading to unnecessarily-high

cooling costs. If the thermal solution is fixed, design-time thermal

optimization can be used to reduce the operating temperature. Most

failure processes, e.g., electro-migration, thermal cycling, time depen-

dent dielectric breakdown, and stress migration depend exponentially

on temperature [6]. Hence, embedded system reliability can also

benefit from reduced operating temperature. Run-time DTM and

design time optimization techniques should be combined to optimize

embedded system performance and reliability.

There is a large body of work on using DVFS in single and

multiple processor systems to minimize energy consumption [7]–

[9]. However, previous work adopted temperature-independent power

models, which will result in large leakage energy estimation errors

in future deep submicron processors. Minimizing energy is the

primary objective in previous work. Several temperature-dependent

leakage power and thermal modeling approaches have been proposed

at the micro-architecture level [10], [11]. However, neither thermal

optimization issues nor voltage selection under real-time constraints

were considered. Recently, Hung et al. proposed a thermal-aware

embedded system synthesis framework by task mapping and schedul-

ing [12]. Paci et al. demonstrated that temperature-aware design is not

critical for ultra low power (less than 3 W) multiprocessor systems-

on-a-chip [13] although it is important for systems with high power

consumptions.

We consider the problem of task voltage selection under real-

time constraints with a number of optimizing objectives: energy op-

timization (EO), thermal optimization (TO), and thermal constrained

energy optimization (TCEO). Our optimization framework is shown
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in Figure 1. To our best knowledge, this is the first article to

present a design-time optimization technique for real-time embedded

systems that makes use of dynamic voltage and frequency scaling

(DVFS) to minimize peak temperature. It should be noted that our

method is general and can be used for high-performance as well

as low-power systems. The problem can be solved by nonlinear

programming [14]. The solution to this problem provides a lower

bound on the minimum peak temperature that can be achieved by

DVFS. Hence, it provides a reference for designers when determining

a temperature constraint for use in optimization, e.g., temperature

constrained energy minimization. We compare the proposed method

with traditional energy optimization method and show that the

results differ, i.e., the optimal energy solution does not generally

have optimal temperature. However, the optimal temperature solution

can be achieved with little energy overhead. When both energy

and thermal metrics are considered in specific embedded systems,

designers must choose a tradeoff between them. Finally, we present

a temperature-constrained energy optimization formulation that may

be used to avoid unnecessarily high temperature resulting from

traditional energy optimizing procedures.

The paper is organized as follows. First, thermal-conscious system-

level models are described in Section II. Thermal, energy, and

temperature-constrained energy optimizing problems are formulated

in Section III. Finally, experimental results are reported in Sec-

tion IV.

II. MODELING METHODOLOGY

This section presents a modeling methodology for system-level

energy and temperature analysis.

II.A. System Model

Multiprocessor system models can be placed in two categories:

hardware and software. In this paper, hardware models specify

multiprocessor systems consisting of various processing elements

(PEs) such as microprocessors, DSPs, field programmable gate arrays

(FPGAs), and application-specific integrated circuits (ASICs). PEs

may support DVFS and are typically connected by communication

units (CUs). When PEs exchange data, the CU in use consumes

energy and introduces delay. We denote the set of PE with and

the set of CUs with . We assume that a PE consists of functional

units, . The switched capacitance and leakage

current for a functional unit in the presence of a particular input

pattern, voltage, and temperature are and . , six

PE-related parameters are known:

is the peak operating frequency,

is the maximal operating voltage,

is the minimal operating voltage,
T is the capacitance vector,

T is the leakage current vector, and

is the thermal resistance matrix.

In software models, real-time applications on multiprocessor

systems are often represented by task graphs, ,

which are directed acyclic graphs composed of sets of

vertices and sets of edges,

an edge exists between and . As Figure 1 shows,

each vertex, , denotes a specific task, and each edge, ,

represents a precedence relationship between two tasks. A deadline,

, is associated with each leaf node, . We denote the set or all

TABLE I

LEAKAGE MODEL PARAMETERS FOR LOGIC AND MEMORY CIRCUITS

Benchmark

c5315 5.406 1127.0 1669.5 2223.7 6.597 5.691

c6288 5.447 1122.7 1670.1 2222.9 6.770 5.692

c7552 5.467 1122.5 1671.0 2223.8 6.769 5.692

16Kx32 2.867 1177.4 1593.1 2162.7 20.037 5.687

64Kx32 2.835 1177.6 1592.0 2161.5 20.325 5.687

2Mx32 2.824 1177.7 1591.6 2161.2 20.422 5.687

leaf nodes as . The communication between tasks is modeled as a

special task executed by a CU. Communication volumes are provided

by the system-level synthesis framework. It should be noted that

another type of precedence relationship may be introduced by task

mapping and scheduling. Those constraints are recorded in the edge

set, :

and use the same PE or

and use the same CU
(1)

The set of all edges is denoted with . A functional

unit’s switching probability for a given task is , which indicates

the average percentage of transistors switching per cycle. The effect

of the input vector effect on leakage current is represented by .

, three technology parameters are defined:

is the task duration in cycles,
T is the switching probability vector, and
T is the leakage factor vector.

II.B. Power and Delay Model

In this section we derive the temperature dependent power model

for DVFS-enabled PEs. The functional unit ’s dynamic power

consumption, , can be calculated using the following formula [7]:

(2)

where is the processor operating frequency and is the supply

voltage.

In the near future, subthreshold leakage and gate leakage will be

the dominant types of leakage current [1]. The fundamental leakage

current formulas for CMOS devices [10], [15], [16] can be used to

derive an expression for functional unit leakage power:

(3)

where and are curve-fitting constants that depend

on circuit type, process, and design. Using HSPICE, we simulate

leakage currents for combinational logic circuits [17] and SRAM [18]

benchmarks under different supply voltages, bias voltages, and tem-

peratures in order to extract the leakage constants, which are shown

in Table I. Temperature ranges from 25 °C to 110 °C; supply voltage

ranges from 0.9 V to 1.4 V; and body bias voltage ranges from 0.0 V

to -0.4 V. Using Equation 3, the average and worst-case leakage

modeling errors are 1.3% and 6%, respectively, i.e., the leakage power

for each functional unit can be accurately estimated. Experimental

results show that leakage constants for different circuits synthesized

using the same standard-cell library are quite similar. Therefore, we

can use general constants to predict leakage for a particular library

and process.

The dependence of a circuit’s delay , and thus operating frequency
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, upon supply voltage is determined using the following formula [7]:

(4)

where the constant is decided by logic depth and process and

is a measure of velocity saturation.

II.C. Thermal Model

According to heat transfer theory, heat flow can be modeled as

follows:

(5)

where

is an diagonal thermal capacitance matrix,

is an thermal conductance matrix,
T is the temperature

vector in which is the ambient temperature,
T is the power vector, and

is a step function.

Note that solving this equation is analogous to circuit analysis.

In steady-state thermal analysis, one estimates the thermal profile as

time proceeds to infinity. Therefore, we can denote as

, allowing Equation 5 to be simplified as follows:

...
...

. . .
...

We denote the inversion of thermal conductance matrix as , the

thermal resistance matrix. In multiprocessor systems, each PE may

have a different cooling configuration and there are no direct heat

transfer channels among PEs. The thermal resistance matrix

for each PE can be extracted automatically [19], [20]. In system-

level optimization, estimation accuracy and speed are both essential.

In the proposed approach, one thermal element is used for each

functional unit. Therefore, it is straightforward to obtain the power

vector . However, if more

accurate thermal profiles are needed, fine-grained thermal analysis

can be used [19], [20].

II.D. Iterative Modeling

Given initial dynamic and static power consumptions, each pro-

cessor converges to a steady-state temperature under specific cooling

and leakage model conditions. The temperature of a PE varies greatly

depending on the currently-executing task. Therefore, traditional

approaches lead to large estimation errors, which may result in sub-

optimal voltage selection. We propose an accurate iterative algorithm

to calculate the steady-state temperature and power consumption.

Lines 2–11 of Algorithm 1 show the iterative power and temperature

calculation algorithm. Lines 3–6 calculate the dynamic and leakage

power for each functional unit. Lines 7–10 do thermal analysis and

update the steady-state temperature vector. The constant, , is a user-

defined integer specifying iteration count. In our experiments, the

processor power vector and steady-state temperature vector

converged with less than iteration-to-iteration variation after

four iterations.

Algorithm 1 power thermal iter( , )

1: Set initial temperature vector

2: for to do

3: for each functional unit in a PE do

4:

5:

6: end for

7: for each functional unit in a PE do

8:

9: Update temperature for functional unit

10: end for

11: end for

12: Output temperature and power consumption

III. FORMULATION

This section describes three voltage selection formulations based

on thermal-conscious system models.

III.A. Problem Formulation

We have developed a system-level synthesis infrastructure [21] and

use it to generate assignments and schedules. In this section we will

focus on the voltage selection problem. The supply voltage vector,

, for the task set should be optimized. Hence, the voltage selection

problem can be expressed as follows:

Minimize or

subject to

and

The objective is to minimize either total energy, , or max-

imum temperature, , during the execution of a task set on

the embedded system, subject to constraints on other functions of

voltages . The non-linear equality constraints are derived from

the power, thermal, and delay models in Section II. The inequality

constraints describe the linear real-time constraints and an optional

temperature constraint. Therefore, the problem may be formulated as

a nonlinear programming problem and solved by either interior-point

or active-set methods [14].

III.B. Thermal Optimization (TO)

The formulation of the temperature optimization problem under

real-time constraints follows:

Minimize

c1

c2

c3

c4

c5

c6

The optimization variables for this problem are the task execution

times , the task start times , and the operating voltages

. The optimization objective is to minimize the maximum tem-

perature of all tasks. For each task, constraint c1 is based on the

delay model, which indicates the relationship between execution time

and supply voltage. Constraint c2 describes the iterative relationship

between power and temperature. It is determined with Algorithm 1.

Constraint c3 gives the task set’s precedence relationships, which are

introduced by data dependencies and resource conflicts. Constraint
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c4 enforces task deadlines. Constraint c5 and c6 bound the ranges of

start times and voltages.

III.C. Energy Optimization (EO)

In this problem variant, the goal is to minimize the total execution

energy of all tasks by controlling processor voltages subject to the

same constraints (c1–c6) described in the previous section.

Minimize

c1–c6 same as TO in Section III-B

III.D. Thermal-constrained Energy Optimization (TCEO)

We formulate the temperature-constrained energy optimization

problem under real-time constraints as follows:

Minimize

c1-c6 same as TO in Section III-B

c7

In this formulation, temperature is used as constraint c7 in the nonlin-

ear programming procedure thereby permitting energy consumption

to be minimized while guaranteeing that the threshold temperature is

not violated.

IV. EXPERIMENTS

In this section, we first explain our experimental setups and

then compare the results of embedded system energy optimization

and thermal optimization. Finally, results for temperature-constrained

energy optimization are reported.

IV.A. Experimental Setup

A system-level synthesis framework [21] was developed for task

mapping and scheduling of embedded systems. In this work, the

maximum operating voltage and frequency are used. Starting from

these performance-optimized solutions, our nonlinear programming

procedures choose appropriate voltage settings for each task to

optimize energy or temperature metrics under real-time constraints.

The software model is represented by a task graph, which indicates

the data dependencies and real-time constraints of tasks. We use

TGFF [22] to generate task graph sets. All benchmarks are solved

on a 1.4 Ghz Centrino™laptop with 768 MB RAM running Linux.

In our experiments, the largest problem can be solved in less than

600 s.

Processor dynamic and leakage power values are taken from

a product datasheet [23]. The technology constants for power

models are extracted based on 65 nm predictive technology model

(PTM) [24]. The leakage ratio is approximately 0.3 for a 65 nm

process [7]. Different cooling conditions are modeled by the cor-

responding thermal resistances [25], which range from 0.4 °C/W to

1.4 °C/W. The thermal resistance matrix, , is extracted using

thermal analysis tools [19]. According to our HSPICE simulation,

changes in input patterns may result in up to change to leakage

current. Therefore, we set switching probability and leakage

impact factor for random benchmark to real numbers having

uniform distributions in the ranges and , respectively. It

should be noted that our formulation is general and independent of

the processor model described in Table II. The processor model used

here is most appropriate for high power density cases, for which

thermal-aware design is important.
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Fig. 2. Energy and power of task1 and task2 as functions of supply voltage.

TABLE II

EXPERIMENTAL SETUP

Variable Value Variable Value Variable Value

Voltage 0.9–1.4 (V) 15 (nF) K

0.244 (V) 3.46 (Ghz) 2.599 (A)

1.2 R 0.8 (°C/W) DL 2 (s)

0.6/0.7 2.0/0.4 EC 3/3

IV.B. Energy vs Temperature Optimization

In this section, we will first show that the results of energy

optimization (EO) and temperature optimization (TO) are inconsistent

using a two-task benchmark. Random large-scale benchmarks are

optimally solved to show the generality of the proposed technique.

Considering a special benchmark consisted of two tasks, task1

and task2, executed in sequence. Task2 has deadline . Table II

indicates the execution cycles , switching probability , and

leakage factor for each task. The energy and power consumption

of each task is given in the following formulas, which are used

iteratively until convergence.

(6)

(7)

Based on the real-time deadline, we can obtain the optimal voltage

relationship between task1 and task2.

(8)

Formulas 6–8 are used to calculate the total energy and power curves

of task1 and task2 as functions of the supply voltage of task1 , as

shown in Figure 2. The total energy curve is fairly flat for task1

supply voltages ranging from 1.1 V to 1.26 V, the lower and upper

voltage bounds shown in the figure. In this range, the total energy

is within 5% of optimality. In Table III, energy consumption, peak

temperature, peak power, and energy overhead are listed for the

voltages in this range.

As we can see from Figure 2 and Table III the voltages resulting

in minimal energy and minimal peak temperature differ. Explicitly

optimizing peak temperature reduced it by 6 °C with 0.8% energy

overhead.

Figure 3 illustrates temperature inconsistency and energy overhead

as functions of thermal resistance between the silicon active layer

and the ambient environment. The inconsistencies increase with

resistance to ambient. The largest temperature difference (up to 15 °C)
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Fig. 3. Energy and thermal optimization inconsistency as a function of

thermal resistance to ambient.

TABLE III

EXPERIMENTAL RESULTS

Optimization Energy Overhead

objective (J) (K) (W) (%)

Thermal optimal 111.7 355 52.1 0.8

Energy minimal 110.8 361 60.2 0.0

Lower bound 115.4 380 83.5 4.2

Upper bound 115.9 366 66.2 4.6

is observed in the poorest cooling conditions (1.4 °C/W) with 1.8%

energy overhead; the same power difference between optimal peak

temperature and optimal energy voltage settings can result in higher

temperature differences under poor cooling conditions.

Figure 4 illustrates the relationship between inconsistency in

temperature and energy optimization and task power profile. The

parameters of Task2 are held constant and the parameters of task1

are adjusted to change relative contribution of leakage to the total

power consumption. In the high leakage case, the largest temperature

difference (up to 9.2 °C) is observed for the case with 0.6% energy

overhead. This can be explained by the fact that higher leakage makes

the power curve change more dramatically as a function of supply

voltage due to stronger power–temperature dependence. Therefore,

the peak power difference and temperature difference become larger

in the high leakage ratio case.

Table III indicates that a voltage assignment consuming nearly

optimal energy can lead to an unnecessarily-high peak temperature.

For example, the lower bound case can result in up to a 25 °C

increase in temperature. However, the energy overhead for that case is

only 4.2%. It is well known that the optimal energy-efficient voltage

selection problem in real processors with discrete voltage levels

is NP-hard [9]. Therefore, heuristics are used. However, existing

techniques only optimize energy consumption without considering

temperature. Therefore, they can produce solutions with poor thermal

characteristics, especially for embedded systems with high power

density or poor cooling.

The two-task benchmark demonstrates that the results of thermal

optimization and energy optimization are inconsistent and these

inconsistencies depend on both the thermal resistance to the ambient

and the leakage ratio. We will now determine whether these observa-

tions hold for large benchmarks. Each graph contains between 2 to 66

tasks, which are mapped on a dual-processor platform. The processor

model and task parameters are decided based on the method described

in Section IV-A.
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TABLE IV

ENERGY CONSUMPTION UNDER DIFFERENT VS APPROACHES NODES

Energy

Benchmark EO TO Overhead EO TO Reduction

(%)

TG1 408 416 2.0 389 375 14

TG2 243655 267737 9.0 365 361 4

TG3 279389 311949 10.4 398 390 8

TG4 747530 845558 11.6 397 379 18.0

Average 8.3 11

As indicated in Table IV, there is a 4–18 °C temperature difference

and a 2%–11.6% energy difference between optimal energy and

optimal temperature solutions; our observations for the two-task case

hold for these large benchmarks. The variation in difference among

benchmarks is due to the randomly-selected task parameters, which

affect the total power consumption and leakage ratio.

We can conclude that optimizing energy without temperature

constraints may result in unnecessarily high temperatures, cooling

costs, and reliability problems. Peak temperature should be explicitly

constrained or optimized when cooling cost or temperature are

important. The simultaneous optimization of energy and temperature

based on a temperature-aware power model will be increasingly

useful in the future as power density increases.

IV.C. Tradeoff Between Energy and Temperature

In this section, we describe the results of our temperature-

constrained energy optimization method. When temperature-

constrained energy optimization is used, it is important to choose an

appropriate temperature bound. If the bound is too loose, the system

may operate at an unnecessary-high temperature. If it is too tight, it

may not be possible to find a feasible solution or the energy consump-

tion might be increased. In Figure 5 the results of optimizing energy,

optimizing temperature, and optimizing energy under temperature

constraints for benchmark TG1 are shown. The minimal energy point

is determined by the energy optimization procedure. This provides

a lower-bound on the energy consumption for use in temperature-

constrained energy optimization. The lower bound on temperature

point is determined by the temperature optimization procedure. Dif-

ferent solutions between the optimal energy and optimal temperature

solutions are produced by providing different temperature bounds to

the temperature-constrained energy optimization procedure. If 381 K

is the temperature threshold, the optimal energy value 409.1 J, which

implies a 8 °C temperature reduction and 0.27% energy overhead
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compared with the minimal energy point. Energy increases when

peak temperature is reduced. Therefore, the energy optimization and

peak temperature optimization results provide useful bounds on the

tradeoffs available between energy and temperature.

V. CONCLUSIONS

Design-time thermal optimization is an effective method of re-

ducing the cooling costs and improving the reliability of embedded

systems. This paper has proposed a novel design-time thermal op-

timization framework based on a temperature-aware power model.

Experimental results show that the results of the proposed technique

are inconsistent with traditional energy optimization. We observed

average 11 °C temperature reduction with 8.3% energy overhead. This

underscores the importance of integrating temperature constraints into

energy optimization algorithms. Finally, we proposed a design-time

procedure to optimize energy under a constraint on peak temperature.
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