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Abstract—Packet-switched interconnect fabric, widely viewed as the de facto on-chip data communication standard in the many-core
era, offers high throughput and excellent scalability. However, these benefits come at the price of router latency due to run-time multi-
hop data buffering and resource arbitration, which account for the majority of on-chip transaction latency. In this work, we address the
latency issue of on-chip network design and propose dynamic in-network resource reservation techniques that are guided by high-
level data transaction information. This idea is motivated by the need to preserve existing abstraction and general-purpose network
performance while optimizing for latency-critical events. Experiments with multithreaded benchmarks demonstrate that the proposed
techniques reduce on-chip data access latency and demonstrate the importance of considering transaction-level information in network
design.

Index Terms—Processor Architectures, Interconnection Architectures, Multiprocessor Systems.
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1. INTRODUCTION AND MOTIVATION

P ERFORMANCE and scalability are primary concerns dur-
ing on-chip interconnect design for many-core chip-

multiprocessors. Compared with circuit-switched intercon-
nects, such as shared bus and point-to-point links, packet-
switched fabric offers more efficient resource sharing, higher
throughput, and better scalability [16], [2]. While delivering
excellent throughput, on-chip networks introduce unnecessary
and non-deterministic latency due to multi-hop data buffering
and resource arbitration.

This article addresses the latency issue of on-chip network
design. This work is motivated by recent research on high-
throughput low-latency interconnect fabric design [13], [10].
Most recent work views an on-chip network as a physical inter-
connect medium and does not explicitly consider the common-
case behavior of higher-level protocols and data transactions.
In contrast, we argue that knowledge of high-level run-time
transactions be used to optimize network performance. We
observe the following common traffic patterns for on-chip
transactions in many-core chip-multiprocessors.

1) Heterogeneous performance requirements: Not every network
packet is time critical. For example, read and write requests
need to be transferred on time, but evictions and writeback
messages do not. Speeding up all the network packets in a
throughput-limited network is suboptimal, since non-critical
packets might delay critical ones.

2) Predictable network resource usage: Run-time data usage
typically shows strong temporal and spatial locality, i.e., a
processor core repeatedly accesses data from a particular L2
cache. As a consequence, the use of the underlying on-chip
network also exhibits locality, e.g., the same routing path is
repeatedly used before being discarded.

These observations indicate that high-level data transactions
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provide valuable information, e.g., distinguishing time-critical
traffic from non-critical traffic. Furthermore, we argue that it is
possible to optimize network design for commonly-occurring
time-critical transactions while maintaining network general-
ity and abstraction. To investigate the performance benefit
of leveraging high-level transaction information in on-chip
network design and optimization, we develop two techniques,
inter-transaction and intra-transaction reservation, which uti-
lize run-time transaction information. These techniques selec-
tively speed up time-critical network traffic, e.g., cache protocol
messages and missed data word packets, by prioritizing and
pre-planning network resource usage.

2. TRANSACTION AWARE RESOURCE RESERVATION

In this section, we characterize on-chip transaction latency
and then present dynamic in-network resource reservation
techniques to minimize the latency of commonly-occurring
time-critical transactions.

2.A. TRANSACTION LATENCY ANALYSIS

Consider a tiled-based chip-multiprocessor design. Each tile
has a processor core, a private L1 cache, a directory, and an L2
cache. Tiles are connected using canonical input-buffer virtual-
channel routers. Each on-chip router consists of five pipeline
stages, including flit buffering and routing (RC), virtual chan-
nel allocation (VA), switch arbitration (SA), switch traversal
(ST), and link traversal (LT) [5]. Only ST and LT stages are
associated with intrinsic communication delay, other stages are
used for resource arbitration.

The on-chip network supports various transactions, such as
read, write, clean eviction, and dirty data writeback. Among
those, read and write transactions are time critical. More
specifically, read and write miss request messages, critical
words, and write acknowledgment messages are time critical.
Non-critical messages include write invalidation (if relaxed
consistency), eviction, and write back messages. Fig. 1 shows a
categorization of the network traffic of six SPLASH2 and ALP-
Bench multithreaded benchmarks. Among these benchmarks,
the percentage of time-critical packets varies from 10.3% to
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Fig. 1. Network traffic breakdown.

20.3%. On average, only 17.8% of traffic is time critical. It is
important to accelerate the time-critical traffic. On the other
hand, speeding up non-critical packets may not be beneficial,
especially when this has the side effect of slowing down time-
critical ones.

Next, we quantify the latency of on-chip data transactions
using read transactions as an example. A read transaction starts
from an L1 cache miss request, which is forwarded to the
corresponding home directory node. If a clean copy of the data
exists on chip, the home directory node forwards the request to
the corresponding L2 cache node, which then forwards the data
to the requesting node. In the event of a cache miss, the request
is forwarded to the off-chip memory. A well-designed on-chip
cache architecture usually leads to a high L2 cache clean hit
rate. The latency of an on-chip read transaction thus results
from network propagation delay and L2 cache access latency.
This latency can be broken into the following components.

1) Trequest : Network latency to transfer the request message
to the corresponding L2 cache node via the home directory
node. Request messages are small, typically one flit long.

Trequest =
X

→directory→L2

(N + contention) (1)

where N is the number of pipeline stages per router and
contention characterizes the average extra resource contention
clock cycles per router.

2) Tcache : L2 data access latency, which is typically in the
range of eight to ten clock cycles using current technology [1].

3) Tdata : Network latency to transfer the data back to the
requesting node. A data packet is large, typically consisting
of a whole cache line. Therefore, packet serialization latency
should be considered.

Tdata =
X

→processor

(N + contention) + Flitsper packet (2)

2.B. TRANSACTION-AWARE RESOURCE RESERVATION

This section presents run-time network resource reservation
and re-planning techniques to accelerate time-critical network
traffic. Resource reservation techniques have been proposed in
the past [5], [10]. However, past work ignores transaction-level
information and treats all on-chip traffic equally, which may
potentially slow down time-critical traffic.
2.B.1) Techniques: Run-time data usage shows strong tem-
poral and spatial locality, which has direct impact on the
use of physical on-chip network resources. When a processor
core repeatedly accesses a particular on-chip cache block, this
pattern is reflected in the network resources connecting the
processor and cache. It is therefore possible to allow con-
secutive transactions to reserve and use the corresponding
network resources without requesting these resources repeat-
edly via run-time arbitration. As described in the previous
section, on-chip network latency includes Trequest and Tdata .
To minimize Trequest , when an L1 miss repeatedly requests

the same directory and accesses the data from a particular L2
cache, the network resources along the corresponding routing
path can then be reserved. Consecutive L1 cache miss requests
to the same directory and L2 cache are forwarded along the
reserved routing path without the need of resource arbitration.
To minimize Tdata , as soon as a request reaches the destination
L2 cache, the return path is reserved in parallel with fetching
data from the L2 cache. In addition, if the request message
shares the same path with the returning data (in the opposite
direction), the request message can be used to reserve the
return path. On the other hand, since reserving resources for
one transaction may potentially increase the latency of others,
it is important to only use resource reservation for time-critical
transactions. In this work, we target read and write transactions
(assuming L1 write allocation policy).

• Inter-transaction Reservation: To reserve network re-
sources for consecutive transactions, a prediction table is
added to each router. This table contains N × N entries,
indicating the priorities of the associated input–output port
pair determined based on recent transmissions, where N is
the number of input/output ports. A prediction is associated
with each input–output pair for the next packet from the same
input port. The router updates the prediction table when a new
packet arrives, i.e., marked input–output pairs that are par-
tially overlapped with the input and output ports used by the
new packet will be reset. Router resource reservation is based
on the prediction table. Therefore, the prediction table enables
a pre-scheduled communication path for incoming packets
following the communication paths as previous packets.

• Intra-transaction Reservation: Inter-transaction resource
reservation may not always be successful due to dynamic
changes in run-time data accesses. In contrast, during each
transaction, network resources used by the returning data can
always be accurately predicted immediately after the corre-
sponding cache node receives a clean data request. The cache
node can then issue a resource reservation flit to reserve the
network path for data return, which can be done in parallel
with L2 cache access, i.e., Tcache is then overlapped with
Tdata . The reservation flit will reserve the necessary network
resources along the paths to the requesting processor node
like a “circuit switch” network. After the data are fetched
from the L2 cache and injected into the network, network
resource arbitration is no longer necessary. Two reservation
flits may try to reserve the same resource for the same time
slot. A first-come first-serve rule is currently implemented.
The later attempt fails and is removed from the network.
The corresponding data packet must then rely on run-time
arbitration starting from the router where the failure occurs.

• Accelerated Intra-transaction Reservation: During a suc-
cessful reservation, a reservation flit traverses the normal
router pipeline stages while the following data packet is
stepped up. In large-scale networks, the reservation flit might
potentially be caught up by the data packet along a long
routing path. Fortunately, resource reservation can also be
used to accelerate the reservation flit. More specifically, when
the request message and the returning data share the same
routing path (in opposite directions), request packets are used
to reserve network resources for the returning reservation flits,
with an accuracy as high as the L2 clean hit rate.

2.B.2) Mechanisms: Once network usage is predicted and
network resources are reserved, router pipeline stages, such as
resource arbitration and data buffering, can be bypassed. For
intra-transaction reservation, reservation flits can accurately
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Fig. 2. Intra-transaction Reservation. Nodes represent routers.

Solid lines indicate request packets, dashed lines indicate reser-

vation flits, and dotted lines indicate data packets. Numbers on

line indicate the start time of the corresponding transfers.

predict the arrival times of data packets. Therefore, the RC,
VA, and SA routing pipeline stages can be bypassed. For
request packets in inter-transaction reservation and accelerated
reservation flits, the SA stage cannot be eliminated due to
potential mis-prediction and resource conflicts. However, they
have priorities in SA stage. Fig. 2 illustrates intra-transaction
reservation without (a) and with (b) the proposed accelerated
technique. In this technique, a request packet predicts and re-
serves a backward path for the reservation flit, which performs
accurate resource reservation for the upcoming data packet.
Since the accelerated reservation flit and reserved data packet
do not need a regular buffer, the change of the path will
not result in resource dependence between adjacent routers.
Therefore, no deadlock will occur.

3. HARDWARE DESIGN

This section describes the implementation of transaction-
aware resource reservation. In addition to the input–output
port prediction table, every input port requires two registers
to record the reserved output port and the corresponding
accurate time slots for the data packets. The registers are
updated by reservation flits. The request packet is sometimes
used to accelerate the reservation flit. Therefore, two additional
registers per port are needed to record the output port and the
approximate time slot for the reservation flit. One flit buffer per
input port is added to accommodate the stepped-up flit that
failed switch arbitration. Area estimation using models from
prior work [3] shows that the proposed techniques increase the
router area by about 8%. In addition, the latencies of the switch
arbitration and switch traversal stages increase slightly due to
priority arbitration and an extra multiplexer stage. However,
delay analysis in TRIPS [8] as well as by Peh and Dally [14]
show that the virtual channel allocation stage typically bounds
clock frequency. We therefore believe that our techniques will
have little impact on clock frequency.

4. EXPERIMENTAL RESULTS

To evaluate the proposed techniques, we implemented a
cycle-accurate cache-network simulator. The simulator sup-
ports k-ary n-cube network topologies consisting of pipeline
virtual-channel input-buffer routers and two levels of on-chip
cache hierarchy and directories. The experimental setup adopts
a hierarchical memory architecture that imitates the server
consolidation scenario for many-core chip-multiprocessors [12].
The L1 cache is private, and the L2 cache is only shared among
processor cores within the same virtual machine. Network traf-
fic traces are gathered using the M5 full-system simulator [4]
running six SPLASH2 [15] and ALPBench [11] multithreaded
benchmarks, including mpgenc, radix, lu, cholesky, ocean, and
waternsq. The system configuration is summarized in Table 1.
In addition, we consider three different workload consolidation

TABLE 1

Configuration

Topology 4-ary & 6-ary 2-mesh
Routing Dimension-ordered

Arbitration Basic Separable Allocator
Number of router ports 5

VCs per port 5
Buffers per VC 5

Flit size/channel width 8 Bytes

L1 cache per tile 64KB, 2-way 64-byte line
L2 cache per tile 1MB, 16-way 128-byte line

L2 data array access time 10 cycles
Memory access time 100 cycles
Coherence protocol MOSI

Processors Alpha 21264
Clock freq. 2 GHz

 20

 25

 30

 35

 40

cholesky lu mpgenc ocean radix waternsq

c
ri
ti
c
a
l 
n
e
tw

o
rk

 l
a
te

n
c
y
 (

c
y
c
le

s
)

w/o
intra

acc-intra
inter

all

Fig. 3. Network latency reduction of a 4×4 system.

models. Local: The threads of the same benchmark are assigned
to neighboring processor cores with strong spatial locality.
Random: The threads of the same benchmark are randomly
assigned without spatial locality. Normal: A combination of
Local and Random workload assignment policy, which preserves
moderate spatial locality.

We first consider a 4 × 4, 16-node configuration using six
single-benchmark workload setups, each of which consists
of a 16-thread benchmark. Fig. 3 shows the network latency
reduction of the on-chip data transactions using different
multithreaded benchmarks with and without the proposed
techniques. As shown in this figure, both the proposed intra-
transaction and inter-transaction techniques reduce network
latency. The “acc-intra” and “intra” columns show network
latency reductions with and without the accelerated technique
enabled in the proposed intra-transaction optimization. When
both intra-transaction and inter-transaction techniques are en-
abled, network latency is reduced. The network read and
write access latencies of the 16-thread cholesky, lu, mpgenc,
ocean, radix, and waternsq applications are reduced by 32.4%,
30.4%, 32.5%, 26.7%, 29.6%, and 34.1%, respectively, with 31.0%
latency reduction on average. The improvement is due to the
acceleration of timing-critical packets.

Next, we consider a 6×6, 36-node configuration using nine
different workload configurations. Each workload contains one
16-thread application (lu, mpgenc, or waternsq) plus the 4-
thread radix, lu, cholesky, mpgenc, and waternsq applications.
We apply the three different consolidation models for each
workload assignment. Fig. 4 shows the simulation results,
which demonstrate that the proposed techniques consistently
reduce network latency. Using the 9 different workload config-
urations, the proposed techniques achieve an average reduc-
tion in network latency of 31.5% (29.1% minimum and 33.8%
maximum). The latency reduction of the proposed techniques
improves when the average on-chip communication distance
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Fig. 5. With and without transaction information guidance.

increases, i.e., from the Local model to Random model. On
average, 86.6% of the data packets were reserved, 74.8% of the
predictions are correct, and 59.8% of the reservation flits are
accelerated. As a side-effect, the average latency of non-critical
packets like eviction and writeback was increased by 7.7%.

To demonstrate the importance of considering transaction-
level information to distinguish time-critical traffic from non-
critical traffic, we extend the proposed intra-transaction tech-
nique to all protocol packets (including both time-critical and
non-critical ones) and compare the critical request messages
latency. The result is shown in Fig. 5. It shows that when
the latency optimization technique is applied to all on-chip
traffic, the average latency of time-critical traffic increases by
13.0% on average. Such performance degradation is mainly
due to non-critical packets blocking time-critical read and write
requests. In addition, the mixture of different types of messages
reduces prediction accuracy, hence the effectiveness of resource
reservation. This study indicates that accelerating all on-chip
traffic is suboptimal. It is valuable to distinguish network
packets based on transaction semantics.

5. RELATED WORK

Recent work on on-chip network design proposes alterna-
tive topologies and routing algorithms to optimize network
latency by minimizing network hop counts. Most past work
concentrates on the physical communication medium without
considering the common-case behavior of the protocols built
upon it, like “Flit-Reservation Flow Control” [5], which is a
pure network technique and uses a separate network to trans-
fer control flits. Recently, in-network cache coherence [7] moves
part of the directory into routers, which minimizes network
hop counts but increases router area significantly and com-
plicates the coherence protocol. Circuit switch coherence [9]
proposes a hybrid on-chip network design and a prediction-
based coherence protocol, but it requires a separate network to
set up the circuit switch path. Ding et al. [6] manage network

resources predictively, but high-level compiler and branch
predictors are required to perform such prediction. Express
virtual channel [10] also focuses on minimizing network per-
hop delay, but it is a pure network-level approach. A low-
latency single-cycle on-chip network architecture is proposed
using network-level techniques [13].

6. CONCLUSIONS

In this article, we propose run-time transaction-aware on-
chip network resource reservation techniques to minimize
transaction latency in many-core chip-multiprocessors. Our
study demonstrates the importance of considering high-level
run-time transactions during on-chip network design and opti-
mization. Detailed simulation demonstrates that, by leveraging
transaction-level information, the proposed inter-transaction
and intra-transaction resource reservation techniques identify
and accelerate on-chip time-critical transactions.
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