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ABSTRACT
Experimental computer systems research typically ignores
the end-user, modeling him, if at all, in overly simple ways.
We argue that this (1) results in inadequate performance
evaluation of the systems, and (2) ignores opportunities.
We summarize our experiences with (a) directly evaluating
user satisfaction and (b) incorporating user feedback in four
different areas of client/server computing, and use our ex-
periences to motivate principles for that domain. We then
generalize (a) and (b) as recommendations for incorporating
the user into experimental computer systems research.

1. INTRODUCTION
Computer systems research in all of its forms has tradition-
ally focused on the development of services and infrastruc-
ture to make it possible to more easily build and scale ap-
plications, as well as to enable new kinds of applications.
The user has been kept at a considerable remove from the
systems software and hardware. We think of the user as
interacting with the application, not with the computer sys-
tem supporting the application. Although the satisfaction
that the user garners depends in large part on the decisions
made by the system, the system has only a myopic view of
the user through the application workload. While the use of
utility functions to represent the user has been proposed for
over a decade, the reality is that how well these functions
operate as a model of the user, and how well they actually
represent diverse user sets is largely unknown.

Over the past three years, we have investigated several com-
puter systems problems with careful consideration, and di-
rect analysis of the end-user. These problems are in the con-
text of client/server computing and include resource borrow-
ing in volunteer computing systems, scheduling of desktop
replacement virtual machines in utility computing systems,
power management in laptop computers, and latency in re-
mote display systems. Based on this wide range of work, we
believe that is important to advocate the following.

1. Experimental computer systems researchers should in-
corporate user studies into the evaluation of their sys-
tems. It is true that user studies are challenging, time
consuming, often require institutional review board in-
teraction, and generally produce small data sets. How-
ever, we have repeatedly found surprising results that
would not have been apparent through typical per-
formance evaluation. In particular, user satisfaction
with the behavior of a system are extremely difficult
to measure by proxy.

2. Experimental computer systems researchers should con-
sider approaches to systems problems that directly in-
corporate feedback from the end-user. The system
need not be completely invisible to the end-user, and
even tiny amounts of end-user input can lead to very
different system designs that produce much improved
levels of measured user satisfaction.1

Although we believe these two points are applicable to vir-
tually any computer system that involves human users, our
experimental work, on which we elaborate in Section 2, has
focused on systems problems encountered in client/server
systems, such as:

• Heavyweight clients that run applications locally and
have intermittent connectivity to the network to re-
trieve and synchronize files, heavyweight clients on
which the user’s personal virtual machine(s) can be
downloaded, cached, and executed. This is the com-
mon use of laptop and desktop computers today.

• Heavyweight clients on which the user’s personal vir-
tual machine(s) can be downloaded, cached, and exe-
cuted. This is the mode of operation suggested by the
CMU/Intel Internet Suspend/Resume project [45] and
the Stanford Collective project [6].

• Desktop replacement systems in which dumb thin clients
interact through VNC [42], Remote Desktop [38], or

1Although the experience reports given in this paper focus
on direct explicit feedback from the user, we do not dismiss
implicit feedback. What is critical is the concept of using
user feedback to customize system behavior on a per-user
basis. We believe that explicit feedback is a powerful tech-
nique and that learning techniques can reduce the interac-
tion rate. However, if implicit feedback can produce similar
results, they are to be preferred. Notice also that explicit
feedback techniques provide a yardstick against which im-
plicit techniques can be compared.



similar protocols [24, 2] with multiuser operating sys-
tems or virtual machines running in centralized clus-
ters. AJAX-based web applications are somewhat sim-
ilar.

In systems such as these, as well as in “client-only” sys-
tems like PCs running Windows, there exists a tension be-
tween performance, resource use, and energy consumption
that must be resolved. Resolving this tension in an optimal
or at least acceptable way is the job of system-level mech-
anisms such as scheduling and resource management. The
system tries to choose an operating point that optimizes a
constrained function of these costs. All functions in interac-
tive systems include some notion of user satisfaction.

Current systems rely upon the following assumptions when
optimizing the configuration to meet user satisfaction re-
quirements:

• Users are considered to be identical with respect to
satisfaction. In other words, the system optimizes for
a canonical user, not for specific users.

• User satisfaction can be measured implicitly. The sys-
tem, in fact, optimizes for proxies of user satisfaction,
such as bounded latency and jitter, minimal power
consumption, or minimal price. Furthermore, the sys-
tem chooses how to combine the many possible metrics
of user satisfaction.

These assumptions are widely held not only within the do-
main of our experimental work, but across experimental
computer systems in general.

In our work, we have concluded that this model of user
satisfaction is simply untenable. We have found that the
following set of principles are important in considering the
optimization problems in client/server systems. Although
many are counterintuitive, we have strong evidence that the
following principles are correct.

1. User variation. User satisfaction with a given oper-
ating point varies dramatically between users. We
have demonstrated that user satisfaction with vary-
ing degrees of contention or restriction of CPU, disk,
and memory resources when using common interactive
desktop applications varies considerably (Section 2.1).
Similarly, we have found that user satisfaction with dif-
fering CPU frequencies varies dramatically (Section 2.2).

2. User-specified performance. Users can specify their
personal metric for satisfaction as a function of system
performance. In many cases, a user is best qualified
to resolve the tension among quality metrics in a way
that satisfies the user. While users vary in satisfac-
tion, they are not ineffable. We have demonstrated
how naive users can control their own CPU schedules
in a desktop replacement scenario to trade off price
and interactive performance (Section 2.3). Similarly,
we have demonstrated an interface for letting naive
users control CPU frequency to tradeoff between per-
formance and power (Section 2.4).

3. User-system interface. The system software that does
optimization should provide simple user interfaces to
allow the user to explicitly indicate how well the system
is trading off the desired quality metrics. Implicit and
explicit expression of the user’s cost function is also
helpful. Sections 2.3 and 2.4 illustrate such interfaces.

4. Learning. Explicit user interfaces to the system must,
over time, require less and less interaction. They should
exploit explicit user interaction to learn user-specific
preferences while simultaneously driving on-line trade-
offs among system quality metrics such as performance,
power consumption, and correctness. The systems de-
scribed in Sections 2.3 and 2.4 include simple learning
techniques that reduce the amount of explicit user in-
put. We also report briefly on our work evaluating
the prospects for speculative remote display systems
(Section 2.5), which shows how more costly learning
algorithms can be fruitfully employed to predict user
actions and responses.

We elaborate on these principles in Section 3, and touch on
how they relate to our experimental work in the relevant
sections.

Building on the experiences we report, and the principles we
distill from them, are for the client/server context, we next
argue that using studies to evaluate systems, and direct user
input to inform them, can be generalized over experimental
computer systems research, and provide advice for experi-
menters who want to apply these ideas (Section 4). Section 5
concludes the paper.

2. EXPERIENCE
We have practiced what we preach, (a) using user studies
to evaluate systems, and (b) using direct user input to in-
form systems. In the following, we summarize the results
(and cite the original work for those interested in learning
more) from five distinct projects, all emerging from the do-
main of client/server systems. Our goal is to illustrate that
our claims about the efficacy of (a) and (b) hold in diverse
areas. The results also give examples of the principles we
have specifically distilled for the client/server environment,
which we elaborate on further in Section 3.

2.1 Measuring and understanding user com-
fort with resource borrowing

Many computers are highly under-utilized [39, 10, 1], a fact
that many widely-used systems rely on to harvest spare
resources for other purposes, a technique we refer to as
resource borrowing. Examples in scientific computing in-
clude Condor [31, 16], Entropia [8], SETI@Home [50], Pro-
tein Folding at Home [25], DESChall [9], and the Google
Toolbar [17]. Such systems are deployed on hundreds of
thousands (SETI@Home) to millions (Google) of computers.
The definition of “spare” in these systems is extremely con-
servative because the foreground user can turn the sharing
systems off if they become irritating. For example, the de-
fault for both Condor and SETI@Home is to run only when
the screen saver is on and there is no other significant load
on the machine. The assumption is that resource borrowing



(a) GUI

(b) Discomfort button

Figure 1: User comfort with resource borrowing in-

terface.

systems must place few restrictions on the resources pro-
vided to the interactive user when the user is active. But is
this true? How restricted can an interactive user’s resources
become before causing discomfort?

To address this question, we conducted the first-ever in-
depth study of user comfort with resource borrowing [19,
18]. We provided a qualitative and quantitative analysis of
direct measurements of user comfort with controlled CPU,
disk, and physical memory contention. In essence, the user
is faced with an increasing degree of resource contention un-
til they finally press a “discomfort button” (Figure 1) The
carefully controlled study examined 33 users operating word
processors, presentation software, web browsers, and games.

Figure 2 gives examples of our quantitative measurements.
Our papers go into much more depth. The figures show
CDFs for CPU, memory, and disk aggregated over all the
tasks in our study (word processing with Microsoft Word,
presentation creation with Microsoft Powerpoint, web brows-
ing with Internet Explorer, and game-playing with Quake, a
first person shooter game). The horizontal axis is the level of
contention for each resource. The vertical axis is the cumu-
lative fraction of users experiencing discomfort. As the level
of borrowing increases, interactivity is increasingly likely to
be affected. This is the discomfort region. Some users do
not experience discomfort in the range of levels explored. We
refer to this as the exhausted region. A run is a controlled
buildup of contention for a given user, application, and re-
source that either ends in the user pressing the button at or
after a high contention level is reached. There is also some
probability that a user will feel discomfort even when no re-
source borrowing is occurring. We introduced blank runs in
which no contention is applied to measure this effect. This
background discomfort is the noise floor.

Our study addressed many aspects to user comfort with re-
source borrowing and their implications. However, the most
important result, which can readily be seen in the data in
Figure 2, is the high variation. This variation is largely ac-
counted for by two dominant factors: the application and

the user. Obviously in a real desktop environment, it is the
user who is the independent factor, as it is the user who
chooses the application to run. User variation within an
application is also very large.

2.2 Measuring and understanding user com-
fort with lower clock frequencies

Having seen that there is tremendous variation in user toler-
ance for restrictions on CPU, disk, and memory resources,
and its implications for resource borrowing systems, con-
sider now a more prosaic context: power management in lap-
top computers. On the processors used in these machines,
the operating system can change the clock frequency (and
corresponding voltage) to trade off power consumption and
performance. Similar to resource borrowing systems, most
software (such as the Windows DVFS algorithm) makes the
assumption that once any load is placed on the CPU (e.g.,
the user does anything), the frequency should be maximized.
But is this true?

To understand the variation in user tolerance for differing
frequencies (on an IBM ThinkPad T43 running Windows
XP), we conducted a small (n = 8) randomized user study,
comparing four processor frequency strategies including dy-
namic, static low frequency (1.06 GHz), static medium fre-
quency (1.33 GHz), and static high frequency (1.86 GHz).
The dynamic strategy is the default DVFS used in Win-
dows XP. Our target processor has a maximum frequency
of 2.13 GHz. We allowed the users to acclimatize to the full-
speed performance of the machine and its applications and
then had them create a presentation (Powerpoint), watch
an animation (Shockwave), and play a game (FIFA Soc-
cer). Users verbally ranked their experiences after each
task/strategy pair on a scale of 1 (discomfort) to 10 (very
comfortable).

A detailed description of the study and its results are avail-
able elsewhere [36, 37, 30], but we summarize the salient
points here. Figure 3 illustrates the results of the study in
the form of overlapping histograms of the participants’ re-
ported comfort level for each of four strategies. Consider
Figure 3(a), which shows results for the PowerPoint task.
The horizontal axis displays the range of comfort levels al-
lowed in the study and the vertical axis displays the count
of the number of times that level was reported. The other
graphs are similar.

As one might expect, user comfort with any given strat-
egy (or frequency in the case of the three static strategies)
is highly dependent on the application. More importantly,
however, is that comfort with given strategy is strongly user-
dependent. For any given strategy, there is a considerable
spread in the reported comfort levels. Some users will be
completely happy with a low frequency even in a demand-
ing application like a game, while others will be displeased
with anything less than the highest frequency for even the
most undemanding application.

2.3 User-driven scheduling
In the Virtuoso2 project [46, 51], we seek to develop tools
and techniques for distributed computing environments based

2http://virtuoso.cs.northwestern.edu
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Figure 3: User comfort with lower clock frequencies: typical Windows laptop.

on the use of virtualization. One application of Virtuoso is a
desktop replacement scenario in which a thin client interacts
with a virtual machine (VM) running on a remote server. A
natural question is how should the user’s VM be scheduled
on the server? Clearly we seek to keep the interactive user
happy while minimizing his utilization of the server to leave
room for more VMs.

We have demonstrated that it is feasible to make effective
use of direct user interaction in the scheduling process; the
user can guide the scheduling process to a solution that bal-
ances user comfort and the resource use. Because the re-
sources needed to keep a user happy are highly dependent
on the application and the user (Section 2.1), we believe
user-specific adaptation is essential.

We have designed, implemented, and evaluated two schemes
for incorporating direct user interaction in scheduling virtual
machines (VMs) within the Virtuoso system. The first ex-
tends the “discomfort button” feedback mechanism of the
user comfort study, and is discussed elsewhere [26].

Our second scheme [28, 29] uses the periodic real-time model.
We have developed a user-level scheduling tool [27] that does
earliest deadline first (EDF) scheduling of periodic tasks [32,
33], letting us run a VM for a given slice within a period of
time. We make the period and slice directly configurable by
the user through a straightforward human interface: a pre-
cision non-centering joystick. The software interface shows
the user the current efficiency of their VM (% of allocated
cycles actually being used) and the price (linear function of
the utilization (slice/period)). Figure 4 illustrates the inter-
face.

(a) GUI (b) Joystick

Figure 4: User-driven virtual machine scheduling.

We ran a comprehensive user study, described in detail in
the cited papers, in which the 18 participants used the inter-
face with the goal of finding a comfortable setting of lowest
cost while they used a range of Windows applications. We
found that almost all users felt that they were able to find
a comfortable setting, as well as a comfortable setting that
they believed was of lowest cost.

We have studied the statistics of the costs of the schedule
that the users chose, and the amount of time they required
to find an appropriate schedule. Our first principle, that
there is a wide variation in user satisfaction with a given
operating point, is reflected in a wide variation in the costs
of the schedules that users chose. The majority of users
were able to find a setting that makes them comfortable, but
there wasn’t just one setting. The time for a user to find a
reasonable schedule is, on average, quite small (< 1 minute),



Task Sub-task Question Yes No NA Yes/Total 95% CT 

Do you feel you are familiar with the performance of this computer? 18 0 0 1 (1,1) Adaptation I 

Are you comfortable with these applications? 17 1 0 0.94 (0.84, 1.05) 

Do you feel that you understand the control mechanism? 18 0 0 1.00 (1,1) 

Acclim. 

Adaptation II 

Do you feel that you can use the control mechanism? 18 0 0 1.00 (1,1) 

Did you find that the joystick control was understandable in this task?  17 1 0 0.94 (0.84, 1.05) I Comfort 

Were you able to find a setting that was comfortable? 18 0 0 1.00 (1,1) 

Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05)  II Comfort+Cost  

Were you able to find a setting that was comfortable? 18 0 0 1.00 (1,1) 

Did you find that the joystick control was understandable in this task? 18 0 0 1.00 (1,1) 

Word 

III Comfort+Cost+Ext 

Were you able to find a setting that was comfortable? 18 0 0 1.00 (1,1) 

Did you find that the joystick control was understandable in this task? 16 2 0 0.89 (0.74, 1.03) I Comfort 

Were you able to find a setting that was comfortable? 18 0 0 1.00 (1,1) 

Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05)  II Comfort+Cost  

Were you able to find a setting that was comfortable? 17 1 0 0.94 (0.84, 1.05) 

III Comfort+Cost+Ext Did you find that the joystick control was understandable in this task? 16 1 0 0.89 (0.74, 1.03) 

Powerpoint 

 Were you able to find a setting that was comfortable? 17 1 0 0.94 (0.70, 1.08) 

Did you find that the joystick control was understandable in this task? 16 2 0 0.89 (0.74, 1.03) I Comfort 

Were you able to find a setting that was comfortable? 13 4 1 0.72 (0.52, 0.93) 

Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05)  II Comfort+Cost  

Were you able to find a setting that was comfortable? 16 2 0 0.89 (0.74, 1.03) 

Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05) 

Web 

III Comfort+Cost+Ext 

Were you able to find a setting that was comfortable? 16 1 1 0.89 (0.74, 1.03) 

Did you find that the joystick control was understandable in this task? 18 0 0 1.00 (1, 1) I Comfort 

Were you able to find a setting that was comfortable? 16 2 0 0.89 (0.74, 1.03) 

Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05)  II Comfort+Cost  

Were you able to find a setting that was comfortable? 14 3 1 0.78 (0.59, 0.97) 

Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05) 

Game 

III Comfort+Cost+Ext 

Were you able to find a setting that was comfortable? 16 2 0 0.89 (0.74, 1.03) 

 

Figure 5: Summary of user responses in study of user-driven scheduling of interactive virtual machines.

has little variation, and is likely to decline even further as
a user becomes more familiar with the system. Our system
is able to use a small amount of direct human interaction
to help a diverse range of users find a satisfactory schedule.
As far as we are aware, this was the first ever demonstration
of the principle of using direct human interaction to inform
and guide a low-level scheduling process.

2.4 User-driven frequency scaling
Dynamic Voltage and Frequency Scaling (DVFS) is a widely
used technique for controlling power and energy use in mod-
ern processors. These processors allow the dynamic selection
of clock frequency and voltage. Reducing clock frequency re-
duces power in linear proportion, while decreasing voltage
decreases it in quadratic proportion. Further, the lowest ac-
ceptable voltage at which the processor can run depends on
the clock frequency with higher frequencies requiring higher
voltages. DVFS techniques typically use event-driven algo-
rithms to set clock frequency, and then set voltage based on
the chosen frequency setting.

Existing DVFS techniques ignore the user, assuming that
CPU utilization or the OS events prompting it are sufficient
proxies. A high CPU utilization leads to a high frequency
and high voltage, regardless of the user’s satisfaction or ex-
pectation of performance. To remedy this limitation, we in-
vestigated User-Driven Frequency Scaling (UDFS) that uses
direct user feedback to drive an online control algorithm that
determines the processor frequency. UDFS automatically
adapts OS power management to user preferences.

Processor frequency has strong effects on power consump-
tion and temperature, both directly and also indirectly through
the need for higher voltages at higher frequencies. The

choice of frequency is directly visible to the end-user as it
determines the resulting performance. There is consider-
able variation among users with respect to the satisfactory
performance level for a given workload mix, as we have il-
lustrated in Section 2.1, and for a given workload mix and
clock frequency combination, as illustrated in Section 2.2.
We exploit these variations to customize frequency control
policies dynamically to individual users.

To investigate the feasibility of UDFS, we have developed
two schemes to control the frequency of the CPU by con-
sidering direct user feedback. Both of these schemes try to
find the ideal operating point by reducing voltage until user
feedback is provided (the interface to perform the user feed-
back is similar to that of Section 2.1). UDFS1 is an adaptive
algorithm that can be viewed as an extension/variant of the
TCP congestion control algorithm [48, 53, 4, 14]. UDFS2,
on the other hand, tries to find the lowest frequency at which
the user feels comfortable and then stabilize there. For each
frequency level possible in the processor, we assign an inter-
val ti, the time for the algorithm to stay at that level. If no
user feedback is received during the interval, the algorithm
reduces the frequency by one level. If a user is irritated, the
interval for the corresponding control level is increased.

To investigate the impact of UDFS schemes, we performed
a study with 20 users. The user study took around 45 min-
utes for each user, during which time each user operated
a laptop running three different applications using the na-
tive Windows DVFS, UDFS1, and UDFS2. The laptop was
connected to a National Instruments 6034E data acquisition
board attached to the PCI bus of a host workstation run-
ning Linux, enabling power measurement. For the three ap-
plications studied (Shockwave, FIFA, and Powerpoint), the
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Figure 6: UDFS: Percentage power improvement

over Windows DVFS. The horizontal axes indicate

individual users, and the mean. The vertical axes

are percentage improvements.

power consumption of the system can be reduced by 22.1%,
averaged across all users.

In addition to this analysis, we have measured the static
power consumption of the CPU by monitoring the frequency
level. The static power consumption results are summarized
in Figure 6, which presents both individual user results and
average results for UDFS1 and UDFS2 for three different ap-
plications. The vertical axis show the percentage improve-
ment for power over the Windows native DVFS scheme. On
average, the power consumption can be reduced by 24.9%
over existing DVFS scheme for all three applications using
the UDFS2 algorithm.

Similar to the results for user-driven scheduling, the results
for user-driven frequency scaling illustrate the utility of hav-
ing even a small amount of user feedback within systems
software.

2.5 Prospects for speculative remote display
Remote display systems such as VNC [42], Windows RDP [38,
43], and others allow the interactive, graphical use of a re-
mote computer or virtual machine. At its simplest, these
systems can be thought of abstractly as a framebuffer on the
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(b) Speculative RDP

Figure 7: RDP and its proposed speculative variant.

client on which the server draws. User events (keystrokes,
mouse movements, etc.) flow from client to server, and
screen events (commands to update the framebuffer) flow
from server to client. Unfortunately, current remote display
systems, even current research systems like THINC [2], suf-
fer when the network latency is high and/or variable [24].

We are exploring extending remote display systems in line
with the client/server principles given in the introduction.
In our system, the client predicts screen events based on the
past user and screen events. If the predicted screen events
refer to locally cached constructs, the client speculatively ex-
ecutes them, undo-logging them as it goes. Most user events,
especially those corresponding to fine-grain interactions like
typing and menu operation, have their responses computed
locally, avoiding the round-trip time. The speculatively exe-
cuted screen events are compared with those being returned
by the server. A difference results in the undo log being used
to restore the display to the point preceding the incorrectly
executed event, at which point the actual event is executed.
The extent of such repair operations and their frequency de-
pends on how aggressive the predictor is, which will be set
by the user. Figure 7(a) shows the current structure of an
RDP client and server in simplified form, while Figure 7(b)
illustrates the structure of a speculative variant of RDP.

Although we have not yet completed a speculative remote
display prototype, we have demonstrated the excellent prospects
of the concept. We instrumented the open-source rdesk-
top [7] client for the the RDP protocol to allow us to capture
traces of user events and screen events (including drawing
commands like bit blit, text drawing, line drawing, etc) that
pass between client and server. We then ran a study in which
four randomly selected participants in our resource borrow-
ing study (Section 2.1) repeated their tasks. This gave us
trace data for word processing, presentation creation, web
browsing, and game playing.

We studied the prediction of the user and screen event streams



(a) User Events (b) Screen Events

Figure 8: Performance of simple, 1000 state, k-th order Markov model in RDP.

using simple, state-limited, k-th order Markov models, con-
figured simply to predict the next event. The modeling was
extremely simple, treating both the type of an event and its
parameters collectively as a string. Also, our preliminary
work only examined predicting the next event. Nonetheless,
we were extremely surprised to find that we were able to
predict extremely well, as shown in Figure 8. Here, we are
showing the percentage of correct predictions as a function
of k, given the current event has been seen at least once
before. More detailed results are available elsewhere [44].

3. PRINCIPLES FOR THE CLIENT/SERVER
CONTEXT

We now elaborate on the principles for optimization prob-
lems within the client/server context that we summarized
in the introduction, building on the experiences reported in
Section 2, and on the results and experiences of others.

User variation: There is considerable variation in user sat-
isfaction with any given operating point. This principle is
directly supported by the evidence in Sections 2.1, and 2.2.
It is also born out by work studying the user annoyance with
interfaces [21, 41] and latency tolerance [22, 12] within the
human computer interaction community. Other results in-
clude limited user-level customization of GUIs [35, 11]. The
systems community has used latency to evaluate operating
systems [13], and developed initial models for interactive
user workload [3].

User-specified performance: The user can and should inform
the systems software of his satisfaction with the current de-
livered performance, which results from the current operat-
ing point. This principle follows from the first principle. By
adapting to the individual user, systems software can choose
an operating point that increases user satisfaction and most
efficiently uses available resources. We first explained this
concept in an HPDC 2004 paper [19]. In Sections 2.3 and 2.4
we illustrated two specific systems that directly incorporate
user-specified performance or satisfaction. The concept has
also begun to see some interest within the adaptive sys-
tems community [47], and recent power management work
has sought to support per-user information to some extent.
In the power management community, measured response
times are typically used as a proxy for the user [34, 54] and
in modern systems like Vertigo [15] these measurements can

be inferred from unmodified applications and optimized in
the context of a per-user profile.

Our notion of user-specified performance differs from that
proposed in prior work in two fundamental ways. First, we
interact directly with users at run-time to measure their sat-
isfaction with performance. Second, we do not decouple user
perceivable measurements from satisfaction. One can argue
that a multi-step process exists: operating point → OS-
level performance metrics (e.g., message timings) → user-
level performance metrics (e.g., latency) → user satisfaction.
Our principle is simpler: operating point → user satisfac-
tion. As a consequence, it eliminates numerous sources of
error from the control–feedback loop connecting user and
operating point control system.

User-system interface: The interface through which the user
interacts with the systems software must be simple, elegant,
and understandable even for naive users. Because the user
is to be involved in the online systems-level decision-making
that determines performance and correctness, it is essential
that the interface be simple, elegant, and usable by naive
users. Note that we are asking the user to provide input
to the lowest level operating system services. Sections 2.3
and 2.4 gave specific examples of such interfaces, as well as
their evaluation. While the topic of user interface design
and evaluation is a deep and complex one, it is important
to note that any effective user interface for systems software
will have to be very simple, which reduces the design space
considerably, and makes evaluation easier.

Learning: The interface through which the user interacts
with the systems software must learn user actions and pref-
erences so that interactions become rarer over time. The
importance of learning, the final principle, follows also from
the interface requirements. Even an elegant interface that is
understandable to naive users would be intrusive if the user
had to interact with it frequently. We believe it is necessary
to develop and apply machine learning techniques to, over
time, learn the individual user’s operating point → satisfac-
tion characteristics. Sections 2.3 and 2.4 illustrated systems
that use very simple learning techniques to reduce inter-
action rates. Section 2.5 illustrated the use of more com-
plex and expensive techniques to predict user-visible system
events. Learning techniques and interface designs interact in
complex ways. We are only at the first stages at determining



just how parsimoniously we can use the user’s attention.

4. GENERALIZATION AND ADVICE
Although the experiences we reported (Section 2) and the
principles we drew from them (Section 3) are specific to the
optimization problems in the client/server environment, we
believe that it is possible to generalize from them to exper-
imental computer systems research overall. In particular,
to reiterate the second paragraph of the introduction, we
advocate that researchers should (1) incorporate user stud-
ies into the evaluation of their systems, and (2) consider
approaches to systems problems that leverage direct input
from the user. In the following, we first elaborate on these
two themes, and then offer advice to those who would like
to operationalize them in their own work.

4.1 Generalizing
In our experience reports, we focused on user satisfaction
in the client/server context. Of course, user satisfaction,
and the idea of explicitly eliciting it as feedback from the
end-user, can be broadly applied. Even for systems that
operate outside the timescale of human attention, we can
collect trace information, compute metrics on it, and elicit
user satisfaction with those metrics.

A key finding that we are sure resonates well beyond the
client/server context is that of considerable variation among
users in their satisfaction with any given configuration choice.
If there is any single take-away message, it is that systems
researchers need to consider the individual user.

For those systems that can be modeled as, or include a con-
trol system element, the individual user can be thought of
in at least three ways. First, the user can provide the “set
point” for the system. Second, the user can provide the
“error signal” of the system. The latter is essentially the
approach we have taken in the reported work on power man-
agement (Section 2.4). Finally, the user can be a part of, or
the whole of the control mechanism itself, determining not
only when the “error” is too large, but also determining the
configuration that will reduce it. It is this model that we
used in the reported work in scheduling VMs (Section 2.3).

Regardless of how or even whether explicit or implicit user
feedback is incorporated into systems, it is clear that as
systems increasingly face users, it is vital that they be eval-
uated, at least in part, through user studies.

4.2 Advice
Evaluating a system via a user study is a different challenge
from evaluating it using a synthetic or trace workload and
straightforwardly visible metrics. Having done a number of
such studies so far, we can offer the following advice:

• You should engage an expert in psychological studies
or human computer interaction. Effective user stud-
ies require extremely careful controls and structure
because human subjects approach an experiment at
many different cognitive levels, and independent goals.
At minimum, refer to the literature (for example, [40,
5, 23]). The advice of Don Norman, Benjamin Watson,
and Bruce Gooch was very important to our work.

• Institutional review boards (IRBs) may have to be
engaged depending on the nature of the user study.
When explaining our work to colleagues, we often have
heard expressed the fear that IRB involvement could
become a colossal time sink. While this is possible, it
is important to note a few things. First, basic IRB
certification is relatively standardized and quite easy
to acquire. Second, user studies in the systems context
are generally classified as social science-based studies,
which require considerably less paperwork than phys-
ical, interventionist studies, which is where most of
the horror stories lie. Third, the paperwork required
for IRB review, although tedious, tends to be quite
reusable. Finally, in many cases, because a user study
in the systems context is patently unlikely to lead to
psychological damage, full review is unnecessary.

• User studies are invariably much smaller than the kinds
of evaluations that we, as systems researchers, are fa-
miliar with. This limits the range of what can be
studied, and it requires that small sample size, robust
statistics [20], or full data reporting, are necessary. In
our experience up to now, the effects that are mea-
sured have been quite large, which makes it possible
to draw strong conclusions despite the small sample
size.

• Although it is nearly impossible to engage a random
subject population, there are techniques, like subsam-
pling, that can be used to estimate selection biases.

• It is vital, especially when measuring user satisfaction,
to differentiate between the actual effect and the back-
ground effect. The measured satisfaction (through sur-
veying, level eliciting, etc) integrates satisfaction with
your system with the user’s general satisfaction. The
equivalent of a placebo is needed to differentiate the
two.

• It is vital that a user study be double-blinded to the
greatest extent possible. Users can inadvertently pro-
duce overly optimistic or pessimistic behaviors if they
can infer the “desired” outcome of the test.

• Ideally, we want to correlate systems-level quantities
that can be easily measured with user study results
in order to validate the latter. However, this is of-
ten difficult, if not impossible, due to the consider-
able variation in user responses. For example, as we
have seen, user satisfaction with particular level of
resources tends to have tremendous variation (Sec-
tion 2.1). Even when we do not have a system-level
quantity to measure, we can use the technique of de-
ception [49] to convince the user that we do. For exam-
ple, in the results of Section 2.3, we video-taped users
in some tests, and claimed that a fictitious psychology
collaborator would analyze the video tape to produce
an independent assessment of user satisfaction. Com-
paring results in which we deceive the user into this
belief, with those where we do not, helps us discount
the possibility that the user is being uncooperative.

• Eliminate all user-visible extraneous information dur-
ing any user study. While it is tempting for us to
build interfaces that provide as much detail as the user



wants, this can dramatically skew results. For exam-
ple, in the preparatory work for the study described in
Section 2.1, we noticed users on one of our two identi-
cal test machines were generally more irritated by disk
bandwidth borrowing. It turned out that this machine
had a visible hard disk access light, while the other did
not.

Our second claim is that systems researchers should con-
sider using direct user input in their systems. We have the
following advice regarding the interfaces for doing so.

• We have generally found that “out-of-band” input de-
vices tend to work best. By out-of-band, we mean that
we add input hardware or use existing input hardware
that is not used for any other purpose. The interface
to the system software will (ideally) be infrequently
used. If we layer it on top of an existing input device,
the user has to essentially perform a “cognitive con-
text switch” to use it, unlearning the normal purpose
of the interface.

• It is tempting to ask for a lot of input (in terms of fre-
quency or dimensionality or both) from the user, but
this should be avoided. Use as little input as possible,
and evaluate the tradeoff between the amount of input
and its utility very carefully.

• Similarly, the output portion of the interface should be
as thin as possible. In some cases, it can be nonexistent
as it is the performance of the system that serves as
implicit output.

• It is important to understand, and account for, the fact
that explicit user input can itself be a source of user
dissatisfaction. When measuring the efficacy of a sys-
tem based on explicit user feedback, the experimenter
must have an independent gauge of this source.

• For some systems and some users, it may be possible
to eliminate all user input through the use of implicit
measures of the user, for example by recognizing pat-
terns in system-level events [52]. Note that explicit
feedback systems can be used as a yardstick in eval-
uating implicit ones. Furthermore, these are not ei-
ther/or propositions. There is a spectrum that ranges
from explicit feedback, to explicit feedback with learn-
ing, to implicit feedback. The latter can fall back on
the former.

5. CONCLUSION
We have advocated that experimental computer systems re-
searchers should (a) incorporate user studies into the eval-
uation of our systems, and (b) consider approaches to sys-
tems problems that draw on feedback or other input from
the end-user. Through our experiences in applying these
ideas in five different systems projects in client/server com-
puting, we illustrated how the ideas can help us find and
exploit new, and often surprising, opportunities and prin-
ciples. Two particular principles we derived is that there
is considerable variation in user satisfaction with any given
operating point, and that this variation can be exploited

through interfaces that use direct user feedback about satis-
faction. We then generalized our results and offered advice
to practitioners who want to apply (a) and (b) to their own
systems and domains.
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