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Abstract—Temperature has a strong influence on integrated
circuit (IC) performance, power consumption, and reliability.
However, accurate thermal analysis can impose high computation
costs during the IC design process. We analyze the performance
and accuracies of a variety of time-domain dynamic thermal
analysis techniques and use our findings to propose a new
analysis technique that improves performance by 38–138× relative
to popular methods such as the fourth-order globally adaptive
Runge-Kutta method while maintaining accuracy. More precisely,
we prove that the step sizes of step doubling based globally adap-
tive fourth-order Runge-Kutta method and Runge-Kutta-Fehlberg
methods always converge to a constant value regardless of the
initial power profile, thermal profile, and error threshold during
dynamic thermal analysis. Thus, these widely-used techniques
are unable to adapt to the requirements of individual problems,
resulting in poor performance. We also determine the effect of
using a number of temperature update functions and step size
adaptation methods for dynamic thermal analysis, and identify the
most promising approach considered. Based on these observations,
we propose FATA, a temporally-adaptive technique for fast and
accurate dynamic thermal analysis.

I. INTRODUCTION AND PAST WORK

Temperature has a strong influence on integrated circuit (IC)
performance, power consumption, and reliability. Accurate and
fast thermal analysis can therefore benefit IC design and con-
trol. Thermal analysis can be separated into two subproblems:
steady-state thermal analysis and dynamic thermal analysis.
Steady-state thermal analysis determines the thermal profile
(i.e., a temperature at each physical position) as time proceeds
to infinity resulting from a power profile (i.e., a power con-
sumption at each physical position). Dynamic thermal analysis
determines the thermal profile as a function of time resulting
from time-varying power profiles. Although more computation-
ally intensive, dynamic thermal analysis is necessary when the
power profile varies before the thermal profile converges and to
reliably detect transient violation of thermal constraints. This
paper will focus on dynamic techniques.

IC dynamic thermal analysis models the thermal conduction
from an IC’s power sources through cooling packages to the
ambient environment, usually using partial differential equa-
tions. In order to approximate the solutions to these equations
using numerical methods, an IC model is decomposed into a
large number of thermal elements such that the thermal varia-
tion within an element is negligible. This permits accurate ther-
mal simulation. The resulting large system matrix makes direct
solutions such as LU decomposition prohibitive. Traditionally,
the dynamic thermal analysis problem can be solved using
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either frequency-domain or time-domain techniques [1], [2],
[3]. Compared with frequency-domain techniques, time-domain
techniques are fast and accurate for the shorter simulation runs
typically encountered when power profiles frequently change.
This paper focuses on time-domain techniques.

A number of researchers have worked on the time-domain
dynamic thermal analysis problem. Skadron et al. developed
HotSpot [2], which uses an adaptive fourth-order Runge-Kutta
method that dynamically adjusts the step size according to
the local error at each time step to solve the finite difference
equations. However, it is a synchronous time marching method:
all the thermal elements have the same step size at each time
point. Recently Yang et al. [3] developed an IC thermal analysis
technique called ISAC. This technique adapts to spatial and
temporal variation in material properties and power profiles.
Although it achieved speedups over the fourth-order Runge-
Kutta method in some circumstances, its assumption about the
temperatures of the neighbors when solving finite difference
equations is inaccurate (see Section IV), often reducing per-
formance and/or accuracy. We know of no work that does a
thorough analysis of the properties of commonly used time-
domain thermal analysis techniques or points out fundamental
problems with using popular finite difference techniques, such
as adaptive Runge-Kutta methods, to solve the dynamic thermal
analysis problem.

This paper makes the following contributions. First, it proves
that the step size will always converge to a constant value
for (a) a step doubling based globally adaptive fourth-order
Runge-Kutta (GARK4) method and (b) Runge-Kutta-Fehlberg
method regardless of the initial power profile, thermal profile,
and error threshold during dynamic thermal analysis. This
reveals a fundamental and surprising performance limitation
when these techniques are used for thermal analysis. Second,
we propose FATA, a new fast asynchronous dynamic thermal
analysis technique. This technique improves performance by
38–138× relative to popular methods such as the GARK4
method [2] and by 118.59–222.60× relative to existing work
in asynchronous time-domain thermal analysis [3] with similar
accuracy. Third, this article indicates the impact of various com-
binations of temperature update functions and step adaptation
methods on performance and accuracy. Our analysis suggests
that combining the trapezoidal method with third-order finite
temperature difference based step size adaptation yields the best
combination of performance and accuracy.
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Figure 1. Model for a single thermal element.

II. THERMAL MODEL AND PROBLEM FORMULATION

In this section, we first give details on the IC thermal model
that characterizes the heat transfer among IC, package, heatsink,
and the ambient environment. We then formulate the dynamic
thermal analysis problem in the matrix-vector form.

Heat and electrical conduction are both governed by the
diffusion equation and can be similarly modeled; thermal con-
ductance corresponds to electrical conductance, heat capacity
corresponds to electrical capacitance, temperature corresponds
to voltage, and power dissipation corresponds to electrical
current. We model a chip as a regular mesh containing N
discretized elements, or a thermal grid, with the ambient
temperature corresponding to ground. Each element has a
ground capacitance and a ground thermal conductance. In
the case where no heat dissipation channel exists between a
thermal element and the ambient, the corresponding ground
thermal conductance is set to zero. Physically adjacent elements
are connected with resistors. The power consumption of each
thermal element is modeled as a current source with current
flowing into the element. Using this model, the thermal grid
can be modeled as a linear system.

Figure 1 illustrates the model for a given element i, which
is connected to n neighbors via resistors. Ground represents
the ambient temperature. We use Ni to represent element i’s
neighbors. Given n ∈ Ni, Ti(t) is the temperature of element
i at time t, Tn(t) is the temperature of element i’s neighbor n,
Tamb is the ambient temperature, Ci is the ground capacitance
at element i, Pi(t) is the heat source associated with element i,
Ris is the ground thermal resistance at element i, and Rin is the
resistance between element i and its neighbor n, Kirchhoff’s
Current Law can be used to derive the following equation:
(

∑

n∈Ni

Ti(t) − Tn(t)

Rin

)

+
Ti(t) − Tamb

Ris

+Ci

dTi(t)

dt
−Pi(t) = 0.

(1)
Equation 1 can be simplified as follows:

Letting T ′
i = Ti − Tamb,∀i in the thermal grid and (2)

αi =
∑

n∈Ni

1

Rin

+
1

Ris

, (3)

dT ′
i (t)

dt
=

1

Ci

(
∑

n∈Ni

T ′
n(t)

Rin

− αiT
′
i (t) + Pi(t)). (4)

For convenience, we will use Ti(t) instead of T ′
i (t) to represent

the normalized temperature of element i, i.e., the difference
between element i’s temperature and the ambient temperature.

Assume the jth neighbor of element i is kj , we define −→gi as

−→gi =

0

B

@
0, · · · , 0
| {z }

k1−1

,
1

Ri1

, 0, · · · , 0
| {z }

k2−1

,
1

Ri2

, · · · ,−α, · · · ,
1

Rini

, · · · , 0

1

C

A
,

(5)

where 1
Rij

is the kj th entry of vector −→gi , representing the

thermal conductance between i and its jth neighbor kj , −α
(defined in Equation 3) is the ith entry of the vector, and all

other entries are 0s. Similarly, we use
−−→
T (t) and

−−−−→
T (1)(t) to

represent the temperature and first-order temperature derivatives
of all N elements in the system at time t, i.e.,

−−→
T (t) = (T1(t), T2(t), · · · , TN (t))T and (6)

−−−−→
T (1)(t) = (dT1(t)/dt, dT2(t)/dt, · · · , dTN (t)/dt)

T
. (7)

Hence, Equation 4 can be written as

dTi(t)

dt
=
(

−→gi ·
−−→
T (t) + Pi(t)

)

/Ci. (8)

Equation 4 holds for all elements in the system. If we define
system matrix A (size N ×N ), thermal capacitance matrix C

(size N × N ), and N -dimensional power vector
−−→
P (t) as

A =
(−→g1

T ,−→g2
T , · · · ,−→gN

T
)T

, (9)

C = diag (C1, C2, · · · , CN ) , and (10)
−−→
P (t) = (P1(t), P2(t), · · · , PN (t))

T
, (11)

the dynamic thermal analysis problem can be described as

follows:
−−−−→
T (1)(t) = C−1

(

A
−−→
T (t) +

−−→
P (t)

)

. However, it is

computationally expensive to directly solve the system equation
due to the high order of system matrices A and C for a typical
thermal model with tens of thousands of discrete elements. A
common approach is to divide time into discrete time steps and
approximate the solutions using finite temperature difference
equations, i.e., using finite difference methods.

III. GLOBALLY ADAPTIVE RUNGE-KUTTA METHODS:
ARE THEY REALLY ADAPTIVE?

Traditionally, finite difference equations are solved by syn-
chronous numerical methods. Runge-Kutta methods such as
the fourth-order Runge-Kutta method and the Runge-Kutta-
Fehlberg (RKF) method are commonly used solve ordinary
differential equations [2], [3]. We have determined that, de-
spite their popularity, these step size control methods are not
appropriate for thermal analysis.

Theorem 3.1 (Step Size Convergence Property): Given an
IC thermal model with N thermal elements that satisfy
Equation 4, the step size of (1) a step doubling based globally
adaptive 4th-order Runge-Kutta (GARK4) method and (2)
RKF method converge to a constant value ch regardless of
initial step size and specified error threshold.

Proof: Since the proofs for both methods are similar, we
present only the proof for the synchronous, adaptive GARK4
method used in HotSpot [2]. We assume the power profile,
−→
P , is constant during a simulation run. Given that

−→
Tk is

the temperature vector at iteration k,
−−→
T

(1)
k is the first-order

temperature derivative at iteration k, and hk+1 is the step size
at iteration k +1, the temperature vector at iteration k +1, i.e.,



−−→
Tk+1 can be expressed as follows:

−→
k1 =

−−→
T

(1)
k = C−1

(

A
−→
Tk +

−→
P
)

, (12)

−→
k2 = C−1

[

A
(−→
Tk + 1/2hk+1

−→
k1

)

+
−→
P
]

=
−→
k1 + 1/2hk+1C

−1A
−→
k1, (13)

−→
k3 =

−→
k1 + 1/2hk+1C

−1A
−→
k2, and (14)

−→
k4 =

−→
k1 + hk+1C

−1A
−→
k3, yielding (15)

−−→
Tk+1 =

−→
Tk + 1/6hk+1

(−→
k1 + 2

−→
k2 + 2

−→
k3 +

−→
k4

)

. (16)

Starting from Equations 12, 13, 14, and 15, substitute the
corresponding terms into Equation 16, resulting in

−−→
Tk+1 =

−→
Tk +

4
∑

n=1

hn
k+1

n!
(C−1A)n−1−→k1. (17)

Next, we present the temperature and step size update functions
in the matrix-vector form. Using Equation 12, we introduce a
few variables to simplify Equation 17.

Let B = C−1A and D = C−1−→P .

−−→
Tk+1 =

−→
Tk +

(

B
−→
Tk + D

)

4
∑

n=1

hn
k+1

n!
Bn−1

=

4
∑

n=0

(hk+1B)n

n!

−→
Tk +

4
∑

n=1

(hn
k+1B

n−1)

n!
D. (18)

Given that fB(h) =
∑4

n=0
(hB)n

n! , the temperature vector at
iteration k + 1 is

−−→
Tk+1 = fB(hk+1)

−→
Tk + (fB(hk+1) − IN×N )B−1D, (19)

where IN×N is a N × N unit matrix. Given that
−→
Tk and hk

are the temperature vector and step size at iteration k, step
doubling based step size adaptation first determines the absolute
difference between the results computed by taking one hk step

and two hk

2 steps, where
−−−−→
Tk+1,s is the temperature vector at

iteration k + 1 using one step and
−−−−→
Tk+1,d is the predicted

temperature vector at iteration k + 1 using two steps.

−−−→

Tk+ 1

2

= fB(
hk

2
)
−→
Tk + (fB(

hk

2
) − IN×N )B−1D, (20)

−−−−→

Tk+1,s = fB(hk)
−→
Tk + (fB(hk) − IN×N )B−1D, (21)

−−−−→

Tk+1,d = fB(
hk

2
)
−−−→
Tk+ 1

2

+ (fB(
hk

2
) − IN×N )B−1D.(22)

The step size for the next iteration, hk+1, is calculated by
dividing the error threshold by that difference, as shown below:

hk+1 = hk ×
(

ǫ/||
−−−−→
Tk+1,d −

−−−−→
Tk+1,s||∞

)
1

5

, (23)

where ǫ is a user-specified error threshold used to control
accuracy. Combining Equations 20, 22, and 21 yields the next
safe step size:

hk+1 = hk ×

(

ǫ/||[f2
B

(
hk

2
) − fB(hk)](

−→
Tk + B−1D)||∞

)
1

5

.

(24)
Equation 19 and Equation 24 can be simplified by defining
−→
Yk =

−→
Tk +B−1D, yielding the following temperature and step

size update functions:

hk+1 = hk ×

(

ǫ/||[f2
B

(
hk

2
) − fB(hk)]

−→
Yk||∞

)
1

5

(25)

−−→
Yk+1 = fB(hk+1)

−→
Yk. (26)

We now prove that the numerical solution of
−→
Y converges

to a constant vector regardless of the user-specified error
threshold ǫ. This will be used to prove step size convergence,
i.e., hk will converge to a constant. Due to the characteris-
tics of RC linear systems, the exact temperature vector (or
−−−→
Ytrue ) will become stable as time proceeds to infinity, i.e.,

limk→∞ |
−−−−−−→
Yk+1,true −

−−−−→
Yk,true | = 0. Given that step doubling is

used to control the step size, we have |
−→
Yk −

−−−−→
Yk,true | = O(h6

k)

and |
−−→
Yk+1 −

−−−−−−→
Yk+1,true | = O(h6

k+1), where
−→
Yk and

−−→
Yk+1 are

obtained by GARK4 at iterations k and k + 1 [4]. Therefore,
when the thermal profile reaches steady state,

|
−−→
Yk+1 −

−→
Yk| = |

−−→
Yk+1 −

−−−−−−→
Yk+1,true +

−−−−−−→
Yk+1,true −

−−−−→
Yk,true +

−−−−→
Yk,true −

−→
Yk|

≤ |
−−→
Yk+1 −

−−−−−−→
Yk+1,true | +

|
−−−−−−→
Yk+1,true −

−−−−→
Yk,true | + |

−−−−→
Yk,true −

−→
Yk| (27)

= O(h6
k) + O(h6

k+1). (28)

As shown later in the section, the steady-state step size is on
the order of 10−6, i.e., the difference between two consecutive
−→
Y vectors, is on the order of 10−36, which is dominated by

numerical error. Hence, we assume limk→∞
−→
Yk = −→cY , where

−→cY is a constant vector. If we use ch to represent the step size
in steady state, Equation 26 gives us

−→cY = lim
k→∞

−−→
Yk+1 = fB(ch) lim

k→∞

−→
Yk = fB(ch)−→cY . (29)

Therefore, fB(ch) has an eigenvalue of 1, with −→cY being one
of the corresponding eigenvectors. Note that this argument
still holds in the presence of a typical numerical error of
10−16. We omit the numerical analysis here due to space
limitations. According to Equation 29, −→cY = fB(ch)−→cY =
· · · = limk→∞ fk

B
(ch)−→cY . Based on the matrix analysis theory

on the relationship between convergence of matrix powers and
eigenvalues, given that λ1(fB(h)), λ2(fB(h)), · · · , λN (fB(h))
are the N eigenvalues of fB(h), limk→∞ fk

B
(h) exists if and

only if max1≤i≤N |λi(fB(h))| ≤ 1, with |λi(fB(h))| = 1 only
if λi(fB(h)) is not defective and λi(fB(h)) = 1 [5].

We then determine the relationship between ch and
max1≤i≤N |λi(fB(h))|. A is real and symmetric because
Rij = Rji,∀1 ≤ i, j ≤ N . We also notice that each row
of matrix A satisfies

∀i : |aii| −

N
∑

j=1,j 6=i

|aij | =
1

Ris

≥ 0. (30)

Furthermore, there exists at least one positive thermal con-
ductance 1

Rks
between element k and the ambient such that

the heat flow into the chip can be conducted through Rks to

the ambient, i.e., |akk| >
∑N

j=1,j 6=k |akj |. Therefore, A is a
Hermitian diagonally dominant matrix with negative diagonal
elements and non-positive off-diagonal elements. This indicates
A is invertible and negative semi-definite. Define diagonal
matrix Q to have an ith element that is the reciprocal of
the square root of the ith element of the thermal capacitance



matrix C, i.e., ∀1≤i≤N : qii = 1√
cii

. Note that Q−1C−1 =

Q. Thus, Q−1BQ = Q−1C−1AQ = QAQ = QT AQ.
Since A is negative semi-definite, QT AQ is also negative
semi-definite. Given QT AQ is also real and symmetric, its
eigenvalues are non-defective and non-positive. It has no zero
eigenvalues because it is invertible (A is invertible). Therefore,
QT AQ is diagonalizable with negative eigenvalues. B is
similar to QT AQ, B is also diagonalizable with negative
eigenvalues, i.e., there exists an invertible matrix P such
that B = P × Λ(B) × P−1, where Λ(B) is the diagonal
matrix consisting of B’s eigenvalues. Thus, we can express

fB(h) as follows: fB(h) = P
∑4

n=0
(hΛ(B))n

n! P−1. Hence,
if λi(B) is the ith eigenvalue of B, the ith eigenvalue of

fB(h) is λi(fB(h)) =
∑4

n=0
(hλi(B))n

n! . Since function f(x) =
∑4

n=0
xn

n! is monotonically decreasing when x < 0, we have
f(x) = 1 ⇔ x = −2.785 when x is negative. We know (1) 1
is an eigenvalue of fB(ch) and (2) hλi(B) < 0, 1 ≤ i ≤ N ,
so the steady-state step size is

ch = 2.785/ max 1≤i≤N |λi(B)|. (31)

Note that max1≤i≤N |λi(B)| can be found numerically, e.g.,
using von Mises’ power method [6]. Thus, we have proven
that the step size of the GARK4 method with step doubling
based step size adaptation converges to ch regardless of initial
thermal profile and error threshold. This conclusion has been
validated using different thermal grid structures in Hotspot
4.0 [2] and ISAC [3]. Note that this argument also holds for step
doubling based low-order explicit methods such as the forward
Euler, other variants of step doubling adaptation [2], and RKF.
For example, HotSpot uses a variant of step doubling method
in which auxiliary bounds are imposed on the maximum
and minimum safe step size relative to the current step size.
However, the constraints have no impact on the steady-state
thermal behavior, i.e., Equations 29 and 31 still hold, leading
to the same steady-state step size. A similar proof also applies
to RKF.

Implications of Step Size Convergence Property

In each iteration, the step size adaptation function calculates a
new safe step size based on the current thermal profile activity.
Intuition suggests that it will use small steps when the chip
temperature is rapidly changing and large step sizes when there
is little change in temperature. When the IC thermal profile
reaches steady state, the temperature function can be accurately
approximated with very large step sizes. Therefore, the steady-
state step size will generally be the longest encountered during
dynamic thermal analysis. We validated our conclusion using
different benchmarks and different grid structures (see Sec-
tion V-A). We found that the percentage of step sizes exceeding
ch (the step size after temperature convergence) ranges from
0.3% to 0.8%, i.e., the steady-state step size is only rarely
exceeded. In summary, the step sizes of the step doubling based
GARK4 method converge to ch long before IC thermal profile
reaches steady state, significantly degrading performance.

Steady-State Step Size Analysis

In this section, we give a rough estimate of the steady-state
step size using the thermal resistances and thermal capacitances
in the thermal grid based on Equation 31. Similar analysis can

also be applied to RKF method. Given trace(B) =
∑N

i=1 bii =

IC thermal model 
parameters

Initial thermal 

profile
Power profile

Initialize/update
event queue

Update temperature using 

trapezoidal method

All thermal 
elements proceed 
to simulation end

Yes

Simulation 
end? Yes

No

Output thermal 

profile

Quiescent 
state?

No

Predict next safe step 
size using third-order 

temperature difference

Process one

pending event

Figure 2. Overview of asynchronous time marching algorithm in FATA.

∑N

i=1 λi(B) ≤ N × max1≤i≤N |λi(B)|, we can estimate the

spectral radius of B as max1≤i≤N |λi(B)| ≥
PN

i=1
bii

N
. We

define 1
τavg

=

P

1≤i,j≤N,i6=j
1

RijCii

m
, where m is the number

of non-zero off-diagonal entries in B. Since
∑N

i=1 bii =
∑

1≤i,j≤N,i 6=j
1

RijCii
= m

τavg
, the estimated steady-state step

size ch,s is

ch,s =
2.785

max1≤i≤N |λi(B)|
≤

2.785
m

Nτavg

=
2.785N

m
τavg . (32)

Note that τavg is the harmonic mean of the RC constants
of different thermal elements. In our validation experiments,
m
N

≈ 6. Therefore, ch,s ≈ 0.464τavg . Furthermore, τavg
usually underestimates the RC constant of the chip. In our
test cases, τavg is approximately 10 µs while the thermal RC
constant associated with the IC, i.e., τIC , is on the order
of 100 µs [7], i.e., τIC ≈ 10τavg . This indicates the stable
step size is approximately 1

10 × 0.464τIC ≈ 0.05τIC , even
when the thermal profile is perfectly approximated by the
temperature update function, i.e., the thermal profile is stable.
Hence, the steady-state step size is severely limited for explicit
step-doubling GARK4 methods.

IV. FATA: FAST ASYNCHRONOUS TIME MARCHING

TECHNIQUE

In this section, we first give an overview of the proposed
technique: FATA. We then describe the major components in
FATA that enable fast and accurate simulation.

IV.A. Algorithm Overview

FATA is an adaptive asynchronous time marching finite-
difference method. Compared to a synchronous method, FATA
permits different elements to have different step sizes with
their own local times. Figure 2 illustrates the algorithm in
FATA. During dynamic thermal analysis, the algorithm takes,
as input, an initial thermal profile, a power profile, and var-
ious IC thermal model parameters such as material thermal
conductivities and heat capacities. After determining the initial
step size for each element, FATA initializes an event queue
containing temperature update events sorted by their target
times, i.e., the element’s current time plus its step size. In
each iteration, the event with the earliest target time is selected
and the corresponding element’s temperature is updated. It then
determines whether the thermal profile of the chip has reached
quiescent state and if so, advances the local times of all the
thermal elements to the user specified simulation end time.
Otherwise, FATA calculates the element’s next safe step size
and reinserts the temperature update event into the event queue
with a new target time. This process is repeated until the
user specified simulation end time is reached. As illustrated



in Figure 2, the major components in FATA are temperature
update, step size adaptation, and quiescence detection. The
following sections explain these components.

IV.B. Temperature Update

Existing asynchronous methods [3] use exponential functions
to update the temperature of the target element i, i.e., the
element under consideration. The derivation is based on the
assumption that the temperature of the neighbors of element i
do not change over [ti, ti + hi], where ti is element i’s local
time and hi is element i’s current step size. This assumption
can lead to a large error when the neighboring nodes experience
significant temperature changes during that period. Worse yet,
these errors can accumulate as time advances, resulting in errors
in temperature and step size calculation that degrade perfor-
mance or accuracy. We therefore propose modeling temperature
change using a variant of trapezoidal method that is tailored to
asynchronous time marching. First, note that Equation 4 can be
simplified as follows:

Let β =
∑

n∈N

Tn(t)

Rin

+ Pi(t) = αTi(t) + Ci

dTi(t)

dt
. (33)

The trapezoidal method can be used to extrapolate element i’s
voltage at the target time ti + hi:

Ti(ti + hi) = Ti(ti) +
hi

2
(f ′

i(ti) + f ′
i(ti + hi)), (34)

where f ′
i(ti) is the element i’s temperature derivative at ti and

f ′
i(ti+hi) is the corresponding derivative at ti+hi. Given target

time t = ti+hi, combining Equation 33 and Equation 34 yields

Ti(ti + hi) =
βhi + Cihif

′
i(ti) + 2CiTi(ti)

αhi + 2Ci

(35)

However, we still face the problem of computing Tn(ti + hi)
(n ∈ Ni) to obtain β at target time ti + hi. The trapezoidal
method cannot be used to compute neighbor temperatures,
for that would result in circular dependency problems. More
specifically, Tn(ti + hi) must be known before Ti(ti + hi)
is computed. Similarly, Tn(ti + hi) depends on Ti(ti + hi).
To solve this problem, we use the forward Euler method to
extrapolate Tn(ti + hi) based on Tn(tn) and f ′

n(tn), where
Tn(tn) represents element n’s temperature at tn and f ′

n(tn)
represents the derivative of element n’s temperature at tn.
We experimented with approximation functions with different
orders and determined combining the trapezoidal method with
the forward Euler method achieves a good balance between
accuracy and performance.

IV.C. Step Size Adaptation

Given the trapezoidal method we use to estimate Ti(t), the
local truncation error in step n of element i can be expressed as

ǫin =
h3

i,nf ′′′
i (ζ)

12 , where hi,n is the size of step n, ζ is between
local times tn and tn+1, and f ′′′

i (ζ) is the third-order derivative
of i’s temperature at time ζ. In practice, we approximate the
step size using a third-order divided difference. For element i
at time step n, the third-order finite difference is expressed as
follows:

DD1(tn) = (Ti(tn) − Ti(tn−1))/(tn − tn−1), (36)

DD2(tn) = (DD1(tn) − DD1(tn−1)/(tn − tn−1),(37)

DD3(tn) = (DD2(tn) − DD2(tn−1)/(tn − tn−1),(38)

ǫin = h3
i,nf ′′′

i (ζ)/12 = DD3(tn)/2, (39)

TABLE I
COMPARISON OF GARK4, ISAC, AND FATA

GARK4 ISAC FATA
Problem CPU Error CPU Error Speedup CPU Error Speedup

time (s) (%) time (s) (%) (×) time (s) (%) (×)

dct ijpeg 2.05 0.01 10.67 0.04 0.19 0.05 0.03 37.86

dct lee 32.74 0.00 43.16 0.08 0.76 0.27 0.03 122.55
dct wang 36.93 0.00 32.02 0.1 1.15 0.27 0.02 138.30

jacobi 2.70 0.01 8.82 0.02 0.31 0.04 0.1 70.68

mac 2.04 0.01 11.13 0.03 0.18 0.05 0.03 38.33
pr2 31.71 0.00 85.15 0.03 0.37 0.39 0.09 80.56

rand100 33.87 0.00 47.51 0.08 0.71 0.31 0.05 109.58
rand200 14.60 0.00 48.14 0.02 0.30 0.28 0.05 52.57

where tn and tn−1 are the local times at time step n and n−1.
The (n + 1)th step size estimation is thus given by

hi,n+1 = k1 ∗

(

(RELTOL ∗ |Ti(tn)| + ABSTOL)

max(ABSTOL, ǫin)

)k2

. (40)

where ABSTOL and RELTOL are the maximum tolerable abso-
lute and relative temperature errors. k1 and k2 are determined
empirically to achieve a good balance between accuracy and
speed. In practice, we use a k1 of 1.5 and a k2 of 0.3. This
method of computing a new step size is similar to that in
SPICE3 [8]. However, that formula uses a more complicated
step control algorithm that also considers the maximum number
of iteration at a given time point during its iterative solving
process.

When the power profile is mostly static for a long time
and the IC thermal profile approaches its steady state, i.e.,
the system becomes quiescent, we advance all nodes to the
simulation end time. This step is called quiescence detection.1

V. EVALUATION

In this section, we evaluate FATA and compare it with exist-
ing thermal analysis techniques. Experiments were conducted
on a Linux workstation equipped with a 1 GHz AMD Sempron
3100 Processor and 1 GB memory. We use a non-adaptive lock-
step RK4 method with a very small step size as our accuracy
(but not speed) reference; error values are computed relative
to this reference. We first compare the accuracy and analysis
times of the step doubling based GARK4 method, ISAC, and
FATA. We also compare temperature update functions and step
adaptation methods.

V.A. Comparison of GARK4, ISAC, and FATA

This section reports the accuracy and analysis time of the
GARK4, ISAC, and FATA. Note that speedup over GARK4
claimed for ISAC in prior work [3] was incorrect due to an
implementation error in the step size adjustment algorithm of
the reference GARK4 method. We used eight real and synthetic
behavioral synthesis benchmarks with different grid structures
to evaluate the candidate analysis techniques. The dynamic
power profiles are generated using a switching model proposed
in the literature [4]. Three different power profiles were used
to simulate different input patterns during behavioral synthesis
and the average runtime for a power profile was reported. To
permit a fair comparison among different techniques, we set the
parameters for each technique to maximize performance while
constraining the peak temperature error over all benchmarks
and all time to 0.1%.

1We omit the details due to space constraints. A extended technical report
will be published.



TABLE II
COMPARISON AMONG DIFFERENT COMBINATIONS OF TEMPERATURE UPDATE FUNCTIONS AND STEP SIZE ADAPTATION TECHNIQUES

TR w. Step Doubling FE w. Step Doubling FE w. DD3 TR w. DD3

Problem CPU Error Slowdown CPU Error Slowdown CPU Error Slowdown CPU Error
time (s) (%) (×) time (s) (%) (×) time (s) (%) (×) time (s) (%)

dct ijpeg 0.39 0.02 6.93 9.84 0.06 174.68 5.65 0.07 100.23 0.06 0.04

dct lee 1.57 0.05 3.29 47.62 0.03 99.90 40.60 0.03 85.17 0.48 0.02
dct wang 1.46 0.06 2.64 49.00 0.02 88.23 41.22 0.02 74.22 0.56 0.02

jacobi 0.27 0.01 5.17 6.52 0.03 123.29 4.88 0.04 92.31 0.05 0.07

mac 0.39 0.01 7.06 9.79 0.05 177.20 5.66 0.07 102.48 0.06 0.05
pr2 2.17 0.05 4.34 66.70 0.06 133.25 50.29 0.07 100.47 0.50 0.05

rand100 1.69 0.07 3.33 50.32 0.03 98.86 43.52 0.04 85.49 0.51 0.02
rand200 1.40 0.02 4.17 39.33 0.06 117.20 33.47 0.06 99.75 0.34 0.03

Table I presents the experimental results. Each row shows
the results for a specific benchmark. Columns two, four, and
seven indicate the CPU time used by GARK4, ISAC, and
FATA. Columns six and nine indicate the speedups achieved
by ISAC and FATA compared to GARK4 given the same
error constraint. FATA speeds up analysis by 37.86–138.30×
compared to GARK4 method and 118.59–222.60× compared
to ISAC, while maintaining accuracy.

We also examined the performance of synchronous methods.
We first compared the accuracy and performance of non-
adaptive lock-step synchronous methods, namely forward Euler
(FE), backward Euler (BE), trapezoidal (TR), and explicit
RK4. Due to space limitations, we omit the full results. FE
is inaccurate, with a peak error of 0.52% regardless of step
size. FE and RK4 are impractical because they require manual
specification of safe step size. FATA is 4.4–20.6× faster than
all the non-adaptive synchronous methods. Adaptive implicit
methods are impractical because they require inversion of the
system matrix at each time step.

V.B. Combining Temperature Update Functions with Step
Size Adaptation Methods

This section analyzes the impact of temperature update func-
tion and step size adaptation method on asynchronous method
performance. We use FE and the variant of TR describe in
Section IV as temperature update candidates and consider step
doubling and third-order divided difference (DD3) as potential
step size adaptation methods. We use the approach adopted by
FATA, i.e., TR combined with DD3 as the base case.

Columns two, five, eight, and eleven of Table II indicate the
runtime for each combination, while columns four, seven, and
ten show the slowdown using the corresponding combination
compared to the base case, i.e., TR combined with DD3.
Note that the runtime for TR combined with DD3 is slightly
larger than FATA because quiescence detection is not used.
In comparison, DD3 is generally better than step doubling,
resulting in a speedup of 2.61–6.5× for TR and a speedup of
1.16–1.74× for FE. The temperature update function is critical
and TR is consistently faster than FE. This explains why FATA
is much faster than ISAC, which makes the inaccurate as-
sumption that neighboring element temperatures do not change
during the integration interval of the current element. This can
cause temperature estimation errors that decrease step size and
degrade performance. The combination of TR and DD3 based
step size adaptation is the best among all candidates. Although a
higher-order temperature update function might further improve
accuracy, this would impose additional computational overhead.
In addition, high-order numerical methods are generally more

likely to cause numerical instability problems in asynchronous
methods. We experimented with a third-order temperature up-
date function. Experimental results indicate the increase in the
computational cost outweighs the improvement in accuracy:
their use is not recommended.

VI. CONCLUSIONS

This paper proves that step doubling based globally adaptive
fourth-order Runge-Kutta and Runge-Kutta-Fehlberg methods
will fail to appropriately adapt step sizes regardless of ini-
tial power profile, thermal profile, and user-specified error
threshold, i.e., the steady-state step size will converge to a
constant value even when the thermal profile has converged,
leading to poor performance. We proposed FATA, an asyn-
chronous time marching thermal analysis technique that cor-
rects this problem and uses other ideas to improve speed
and accuracy. Experimental results indicate that FATA speeds
up dynamic thermal analysis by 37.86–138.30× compared to
an existing synchronous globally-adaptive fourth-order Runge-
Kutta method and by 118.59–222.60× relative to an existing
asynchronous adaptive dynamic thermal analysis technique,
while maintaining accuracy. FATA will replace the time-domain
solver used in ISAC; a new version will be released after
integration [9]. Note that our findings do not imply that Runga-
Kutta based thermal analysis methods are inaccurate, only that
they may be inefficient due to inappropriately adapting step
sizes to problem conditions.
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