
Online Work Maximization under a
Peak Temperature Constraint

Thidapat Chantem
Department of CSE

University of Notre Dame
Notre Dame, IN 46556
tchantem@nd.edu

X. Sharon Hu
Department of CSE

University of Notre Dame
Notre Dame, IN 46556

shu@nd.edu

Robert P. Dick
Department of EECS
University of Michigan
Ann Arbor, MI 48109

dickrp@eecs.umich.edu

ABSTRACT

Increasing power densities and the high cost of low thermal
resistance packages and cooling solutions make it impracti-
cal to design processors for worst-case temperature scenar-
ios. As a result, packages and cooling solutions are designed
for less than worst-case power densities and dynamic voltage
and frequency scaling (DVFS) is used to prevent dangerous
on-chip temperatures at run time. Unfortunately, DVFS
can cause unpredicted drops in performance (e.g., long re-
sponse times). We propose and optimally solve the prob-
lem of thermally-constrained online work maximization for
general-purpose computing systems on uniprocessors with
discrete speed levels and non-negligible transition overheads.
Simulation results show that our approach completes 47.7%
on average and up to 68.0% more cycles than a näıve policy.

Categories and Subject Descriptors

B.8 [Hardware]: Performance and Reliability

General Terms

Algorithms, Design, Performance, Theory

1. INTRODUCTION & CONTRIBUTIONS
In response to the increasing computing demands made

by applications, system designers have been delivering pro-
cessors with higher performance at the expense of increasing
power densities and temperatures. High chip temperature
impacts reliability, performance, cost, and power consump-
tion; microprocessor failure rate depends exponentially upon
operating temperature [11]. To handle unsafe temperatures,
packages and cooling solutions can be designed to handle
worst-case temperature profiles. However, this solution is
prohibitively expensive, since the cost of cooling solutions
increases super-linearly in power consumption [5].

This work was supported in part by NSF under grant num-
bers CNS-0834180, CNS07-20457, CCF-0702761, and CNS-
0347941 and in part by SRC under grant number 2007-HJ-
1593.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’09, August 19–21, 2009, San Francisco, California, USA.
Copyright 2009 ACM 978-1-60558-684-7/09/08 ...$10.00.

Another, less expensive, solution to the temperature prob-
lem is to use processor throttling at run time: when the chip
temperature exceeds some threshold, the processor power
consumption and performance are temporarily reduced by
hardware or the operating system. Unfortunately, throt-
tling can cause significant and difficult-to-predict perfor-
mance loss such as increase in response times.

In this work, we attempt to minimize task response times
by maximizing the work completed via an online control pol-
icy that requires no prior knowledge of the workload. Dy-
namic Voltage and Frequency Scaling (DVFS) is used to
keep the chip temperature within a temperature constraint.
Maximizing the work completed can also be useful in soft
real-time systems where the objective is to meet as many
deadlines as possible, since it can reduce the number of dead-
line misses. This claim is substantiated in Section 6.

While there exists work in literature that maximizes work
completed online using DVFS under a peak temperature
constraint [3,1,4], most solutions assume processors can con-
tinuously adjust their speeds. While some authors discuss
ways to adapt their solutions for processors with discrete
speed levels (albeit without any analysis), only Wang and
Bettati placed an emphasis on processors with discrete speed
levels [12]. In that work, the processor runs at the highest
speed until the threshold temperature is reached. The equi-

librium speed will then be used to keep the temperature just
below its constraint. The equilibrium speed is determined
by task power consumption, processor thermal resistance,
and temperature constraint and does not necessarily coin-
cide with one of the available speed levels.

To the best of our knowledge, there exists no work that
proposes a DVFS control policy for maximizing the work
completed for processors with discrete speed levels and non-
negligible transition overheads. The Intel chips have two
thermal management policies [6]. Once the chip tempera-
ture reaches the threshold temperature, the first mechanism
(known as Thermal Monitor 1), which is also the default
mechanism, reduces the duty cycle of the clock (i.e., the
proportion of time the clock is active) until the chip tem-
perature drops below the maximum temperature and a timer
has expired. The second mechanism (Thermal Monitor 2),
which is user-configurable, uses throttling to reduce power
consumption. While these mechanisms seem reasonable, it is
unclear how the user may select the appropriate speed levels
and the associated time durations to maximize the amount
of work completed. Finally, most existing industry thermal
management solutions have operated under the assumption
that thermal emergencies are rare events, for which reactive

105

techniques are sufficient. Now and in the future, due to the
cost of high-performance cooling solutions, processors will
often operate near their threshold temperatures, requiring
proactive techniques to maintain good performance.

In this paper, we tackle the problem of determining speed
schedules that maximizes the work completed under a maxi-
mum temperature constraint. We propose an optimal DVFS
control policy for processors with discrete speed levels and
non-negligible transition overheads. Our policy is applica-
ble to any uniprocessor architecture and requires only two
speed levels to maximize the work completed. The two speed
levels alternate in a periodic manner (Section 3) with some
high speed being applied until the chip temperature reaches
the threshold temperature. Simulation results show that our
DVFS control policy completes 47.7% on average and up to
68.0% more cycles than a näıve policy.

2. PRELIMINARIES
We consider a DVFS-enabled processor with a tempera-

ture threshold Tmax . When the processor temperature reach
this threshold, the processor starts throttling, i.e., switching
from some high speed to some lower speed to reduce power
consumption and performance.

We adopt the lumped RC thermal model similar to that
used by Zhang and Chatha [14]. The die temperature above
the ambient temperature after t time units is

T = T̂ + (T0 − T̂) · e−
t

τ , (1)

where T̂ is the die’s steady-state temperature and T̂ = Pdyn ·
R, with Pdyn being the dynamic power consumption of the
die and R its resistance. In addition, τ is the chip time
constant, and T0 is the initial die temperature. Eq. 1 was
obtained by solving the following differential equation for T :

RC
dT

dt
+ T − RP = 0. (2)

Although we will use Eq. 1 for the rest of the paper, all
of our derivations in this paper hold for any exponential
temperature equation of the same form. For instance, we
can replace Eq. 1 with the temperature equation obtained
by Rao and Vrudhula where the die and package are mod-
eled separately [10]. We can also extend Eq. 1 to account for
leakage power by noting that a piecewise-linear function can
be used to estimate leakage power in the operating tempera-
ture ranges with roughly 5% error [8]. That is, the modified
Eq. 1 can be obtained by solving the following:

RC
dT

dt
+ T − R(Pdyn + Pleak) = 0, (3)

where Pleak = αT + β for some constants α and β [8].
For each speed level k of the processor, we define an as-

sociated tuple (Vk, Sk, Pk), where Vk, Sk, and Pk are the
required voltage, speed, and power consumption of the pro-
cessor when it executes at speed level k, respectively. For
speed level k, Eq. 1 can be written as

T = T̂ (Sk) + (T0 − T̂ (Sk)) · e−
t

τ , (4)

where T̂ (Sk) is the steady-state temperature when the pro-

cessor executes at speed level k and T̂ (Sk) = S3
kPkR.

Problem 1: Given a processor that is kept busy with work
to be completed, determine a speed schedule such that the
peak temperature constraint is met and total work com-
pleted is maximized.

3. POLICY FOR PROCESSORS WITH NEG-

LIGIBLE TRANSITION OVERHEADS
We describe a policy for maximizing the work completed

over a schedule length based on some crucial observations.
Namely, we determine (i) the speed levels needed, (ii) the
length of time the processor should spend in each speed level,
and (iii) the temporal sequence of speed levels at which the
processor should execute.

For now, we assume that the processors under consider-
ation have negligible speed transition overheads (Section 4
will generalize). This simplifying assumption allows us to
identify some important characteristics of our policy.

Our objective is to develop an optimal DVFS control pol-
icy for use once the chip reaches its threshold temperature,
and not a pre-throttling policy. In many systems, the time
from startup to reaching the temperature constraint is a neg-
ligible percentage of total time. In addition, it is important
to note that our DVFS control policy does not perform task
scheduling, though it can be used in conjunction with any
existing task scheduling algorithm.

Consider a high speed level SH where T̂ (SH) ≥ Tmax .
During throttling, if the processor execute tasks using SH

for long enough, the chip peak temperature will eventually
reach Tmax . Our first question is whether such a high speed
should be used until the chip temperature reaches Tmax or
be used for a shorter amount of time. The following lemma
answers this question. In addition, the “sufficiently large
time interval” requirement is there to ensure that the time
interval under consideration is long enough for the chip tem-
perature to reach Tmax at least once.

Lemma 1. Given a sufficiently large time interval [ta, tb],
consider the speed schedules that consecutively apply SL1,

SH , and SL2 where T̂ (SL1) < Tmax , T̂ (SL2) < Tmax and

T̂ (SH) ≥ Tmax . In addition, SL1 and SL2 may be identical

but need not be. Let the transition overheads be negligible.

Given some initial temperature Ta ≥ min{T̂ (SL1), T̂ (SL2)}
and end temperature Tb. A schedule that completes the max-

imum amount of work must allow the chip temperature to

reach Tmax at the end of the application of SH .

We give a sketch of the proof (details can be found in
our technical report [2]). The work completed is a function
of SH , SL1, SL2, ta, tb, as well as t1 and t2, which are the
durations of the application of SL1 and SH , respectively.
Accordingly, we can write three temperature equations for
interval [ta, tb]. Solving the system of equations, we express
the work completed as a function of T2, the end temperature
of the high speed execution. By differentiating the total
work completed with respect to T2 and setting the resulting
function to 0, we can solve for T2 and show that to maximize
the work completed, T2 = Tmax .

In Lemma 1, we referred to the high (SH) and low (SL1

and SL2) speeds with the requirements that T̂ (SL1), T̂ (SL2) <

Tmax and T̂ (SH) ≥ Tmax . Since modern processors often
have several speed levels, we use the following theorem to
determine which maximize the work completed.

Theorem 1. Given a sufficiently large time interval [ta, tb],
consider the speed schedules that consecutively apply SL1,

SH , and SL2 an arbitrary number of times and T̂ (SL1) <

Tmax , T̂ (SL2) < Tmax , and T̂ (SH) ≥ Tmax . Let the transi-

tion overheads be negligible. Given some initial temperature

106

Ta ≥ min{T̂ (SL1), T̂ (SL2)} and end temperature Tb and as-

sume that the duration of the application of SL1 or SL2 is

non-zero, a schedule that completes the maximum amount

of work must satisfy SL1 = SL2 = max{s|T̂ (s) < Tmax} and

SH = min{s|T̂ (s) ≥ Tmax}.

Proof. We first prove the theorem for the schedules that
consecutively apply SL1, SH , and SL2 once. Let t1 and
t2 denote the durations of the application of SL1 and SL2,
respectively. Let t3 denotes the duration of the application
of SH and t3 = tb−ta−t1−t2. In addition, let T1 and T3 be
the temperatures at the end of the application of SL1 and
SH , respectively. We can write three associated temperature
equations as follows:

T1 = T̂ (SL1) + (Ta − T̂ (SL1))e
−

t1

τ , (5)

T3 = T̂ (SH) + (T (t1) − T̂ (SH))e−
tb−ta−t1−t2

τ , and (6)

Tb = T̂ (SL2) + (T (t3) − T̂ (SL2))e
−

t2

τ . (7)

From Lemma 1, we know that T3 = Tmax . Letting A =

e−
tb−ta−t2

τ and combining Eq. 5 with Eq. 6 yields

t1 = τ ln

T̂ (SH) − Tmax + (Ta − T̂ (SL1))A

(T̂ (SH) − T̂ (SL1))A

!

. (8)

By definition, the total work completed during [ta, tb] is
W = (SL1 − SH) · t1 + (SL2 − SH) · t2 + SH · (tb − ta).
To determine the appropriate value of SL1 to maximize W ,
we take the partial derivative of W with respect to SL1,
observing that neither A nor t2 depends on SL1. We obtain:

∂W

∂SL1
= τ ln

T̂ (SH) − Tmax + (Ta − T̂ (SL1))A

(T̂ (SH) − T̂ (SL1))A

!

+
τ(SL1 − SH)T̂

′

(SL1)

T̂ (SH) − T̂ (SL1)
·

T̂ (SH) − Tmax + A(Ta − T̂ (SH))

T̂ (SH) − Tmax + A(Ta − T̂ (SL1))

!

.

(9)

From Eq. 9, ∂W

∂SL1

= 0 if Ta = A−1(Tmax−T̂ (SH)+T̂ (SH)A).

However, Tmax < T̂ (SH) − A(T̂ (SH) − Ta) and therefore

Ta > A−1(Tmax −T̂ (SH)+T̂ (SH)A). (This can be proved by
combining Eq. 5 with Eq. 6, writing the resulting equation as
a function of Tmax , and directly comparing Tmax to T̂ (SH)−

A(T̂ (SH) − Ta)). Now, we want to determine how ∂W

∂SL1

changes as Ta increases. To do so, we take the second partial
derivative of W with respect to Ta. We have

∂2W

∂Ta∂SL1
= τ

A

T̂ (SH) − Tmax + A(Ta − T̂ (SL1))

·

1 +
A(SL1 − SH)T̂

′

(SL1)

T̂ (SH) − Tmax + A(Ta − T̂ (SL1))

!

. (10)

Since T̂ (SH)− Tmax + A(Ta − T̂ (SH)) > 0, T̂ (SH)− Tmax +

A(Ta − T̂ (SL1)) > 0. Now, ∂
2
W

∂Ta∂SL1

≥ 0 if the expression

inside the main parentheses of Eq. 10 is greater than 0. In
other words, we wish to show that

A(SL1 − SH)T̂
′

(SL1)

T̂ (SH) − Tmax + A(Ta − T̂ (SL1))
≥ −1. (11)

Since T̂ (SL1) <
T̂ (SH)−T̂ (SL1)

SH−SL1

, we have

A(T̂ (SH) − T̂ (SL1)) ≤ T̂ (SH) − Tmax + A(Ta − T̂ (SL1))

Tmax ≤ T̂ (SH) − A(T̂ (SH) − Ta), (12)

which holds, as was explained between Eq. 9 and Eq. 10.

Therefore, ∂
2
W

∂Ta∂SL1

≥ 0 and as Ta increases, ∂W

∂SL1

also in-

creases. In other words, ∂W

∂SL1

≥ 0 for all valid values of Ta

and SL1 = max{s|T̂ (s) < Tmax}.
The same technique can be used to prove that SH =

min{s|T̂ (s) ≥ Tmax} and SL2 = max{s|T̂ (s) < Tmax}. Fur-
thermore, using induction, we can prove the theorem for
the schedules that consecutively apply SL1, SH , and SL2 an
arbitrary number of times.

As a direct consequence of Theorem 1, a DVFS control
policy that maximizes the work completed only needs to
use two speed levels: SH = min{s|T̂ ≥ Tmax} and SL =

max{s|T̂ < Tmax}. Incorporating these results, the following
theorem generalizes the observation from Lemma 1 to an
arbitrary number of high speed intervals. For the rest of the
section, the proofs can be found in our technical report [2]).

Theorem 2. Given a sufficiently large time interval [ta, tb],

SL and SH be alternately applied and T̂ (SL) < Tmax and

T̂ (SH) ≥ Tmax . Let the transition overheads be negligible.

Given an initial temperature Ta = T̂ (SL) and end temper-

ature Tb, and let the total number of speed transitions be

fixed, a schedule that completes the maximum amount of

work must allow the chip temperature to reach Tmax at the

end of every application of SH .

Theorems 1 and 2 provide a theoretical foundation for any
work-maximizing, DVFS control policy. That is, the theo-
rems specify the speed levels needed and indicate that it is
advantageous in terms of maximizing the work completed
to alternate between the high and low speeds while allowing
the chip to reach the maximum temperature at the end of
every high speed application interval. We now need to de-
termine how long the low speed level should be applied and
whether each low speed level interval should have the same
duration. To answer these questions, we begin by defining a
periodic speed schedule then showing that such a schedule
is part of the optimal DVFS control policy.

Definition 1. A periodic speed schedule is a speed sched-
ule that alternately applies SL and SH (where T̂ (SL) < Tmax

and T̂ (SH) ≥ Tmax) in a time interval such that the dura-
tions of all applications of SH are the same and the durations
of all applications of SL are the same.

Lemma 2. Given a sufficiently large time interval [ta, tb]
with the initial chip temperature of Tmax , let SL and SH

be alternately applied with SH being applied until the chip

temperature reaches Tmax and T̂ (SL) < Tmax and T̂ (SH) ≥
Tmax . Let the transition overheads be negligible and let the

total number of speed transitions be fixed. A schedule that

completes the maximum amount of work must be a periodic

speed schedule.

Though Lemma 2 describes a desired property of a work-
maximizing speed schedule, it does not specify the length of
the SL intervals. The time duration in which the processor
applies SL determines the number of speed transitions in a
given time interval. For processors with negligible transition
overheads, more transitions would lead to more work com-
pleted (i.e., the duration of every application of SL should
be minimized), as shown by the following theorem.

107

Theorem 3. Given a sufficiently large time interval [ta, tb],

Let SL and SH be alternately applied and satisfying T̂ (SL) <

Tmax and T̂ (SH) ≥ Tmax . Let the transition overheads be

negligible. A schedule with m speed transitions completes

more work than a schedule with n speed transitions if m > n.

We now summarize our optimal DVFS control policy.
To maximize the work completed, the processor should pe-
riodically alternate between the low speed SL = max{s|T̂ <

Tmax} and the high speed SH = min{s|T̂ ≥ Tmax}. In ad-
dition, the processor should run at the high speed SH until
the chip temperature reaches Tmax . With negligible tran-
sition overhead, the processor should minimize the time it
spends running at the low speed (i.e., the throttling time)
by switching to the high speed as soon as possible.

4. EXTENDING THE OPTIMAL POLICY TO

NON-IDEAL CASES
Each speed transition imposes some overhead, reducing

the amount of time spent on computation. Figure 1 illus-
trates the typical trajectories for voltage and speed levels
during two transitions. When transitioning from a lower
speed to a higher speed, the voltage is gradually increased
until it reaches the required value (we have simplified the
voltage curve to a straight line when in reality it is a stair-
case curve). Once this happens, the processor switches to
the higher speed. During this transition, there is a small
time interval α during which the processor clock is halted
and no work is completed. The process of transitioning from
a higher speed to a lower speed is similar, except that the
processor switches to the new speed immediately and gradu-
ally decreases the voltage. Once again, the processor clock is
halted for a short duration β. Typical values for α and β are
on the order of tens of microseconds. The voltage changing
times, a and b, are on the order of hundreds of microseconds.

Compared to the scenario where there is no transition
overhead (denoted as “ideal” in Figure 1), there is no work
loss during b. During α and β, the number of cycles lost is
SH ·α and SL ·β, respectively. Finally, during a, the number
of cycles lost is (SH − SL) · a. To find the optimal value of
the time the processor spends at the low speed level tl, we
find the maximum value of the net work completed function
that accounts for transition overheads.

Given a schedule length L, the net work completed W ∗ is

W
∗ = [(tl − β + a) · SL + (th − α − a) · SH] ·

L

tl + th

, (13)

where th is the duration of the high speed level application.
The following theorem identifies the optimal value for tl.

Theorem 4. Given a schedule length L, let SL and SH be

two speed levels satisfying T̂ (SL) < Tmax and T̂ (SH) ≥ Tmax

Let tl and th be the time durations the processor spends at the

low and high speeds, respectively, and let λ = β ·SL+α·SH +
(SH−SL)·a, where α, β, and a are constants associated with

transition overheads as defined previously. Further, assume

that the processor uses the DVFS control policy presented

in Section 3. A speed schedule that maximizes the net work

completed over L must have t∗l that satisfies

(SH − SL) · (th − t
∗

l · t′h) − λ · (1 + t
′

h) = 0, (14)

where th is expressed as a function of t∗l and t′h = ∂th

∂t∗
l

.

As a result, we can use our previously proposed policy
to maximize the work completed for processors with non-

0

s
L

s
L

s
H

V
L

V
H

V
L

a

α β

b

t
BE

t

Ideal speed

Actual speed

Approximate

voltage

Figure 1: Waveforms of speed S and voltage V levels

for two transitions.

negligible transition overheads if the throttling time is found
by solving Eq. 14 using a nonlinear equation solver.

5. WORKLOADS WITH DIFFERENT POWER

CONSUMPTIONS
So far, we have assumed that processor power consump-

tion is fixed over time for a given speed level. In reality,
the required power consumption may depend on the de-
tails of operation and hardware, resulting in steady-state
temperatures differing among workloads even for the same
processor speed level. Since our DVFS control policy re-
lies on the steady-state temperature of different speed levels
to determine SH and SL, some modifications are needed.
Consider a system that must execute different workloads
with different power consumption over time. For the dura-
tion of a workload, which may consist of a number of ap-
plications, we can determine SH and SL as follows: SH =
min{s|s3PiR ≥ Tmax} and SL = max{s|s3PiR < Tmax},
where Pi is the maximum power consumption when execut-
ing workload WLi. As long as the power consumption of the
workload in a given time interval is known at run-time, e.g.,
by using performance counter based power models [7], our
proposed DVFS control policy will maximize the work com-
pleted. The more complex case where tasks in a workload
require different power consumptions is left as future work.

6. SIMULATION RESULTS
In this section, we use simulation results to demonstrate

the effectiveness of our optimal DVFS control policy.

6.1 Simulation Setup
Using a Java simulator, we modeled our processor based

on the Alpha 21264 processor, which consumes 120W of
power when running at the highest frequency of 4GHz with
the maximum temperature of 110 ◦C [10]. The silicon die
and copper package have the dimensions of 16mm × 16mm
× 0.5mm and 24mm × 24mm × 2mm, respectively. The
threshold temperature is set to 90 ◦C. To compute the time
constant for Eq. 1, we obtained temperature data via simula-
tions in ISAC [13] using the default settings for all thermal-
related parameters (e.g., heat capacity).

Since we did not have the data on the available voltage
and frequency pairs of the Alpha processor, we assumed that
it can switch to the same speed levels as the Intel Core
Duo [6]. That is, we used the speed levels of the Intel Core
Duo but calculated the corresponding power consumption
and frequency. For our system, the available speed levels
are: 0.462, 0.615, 0.692, 0.769, 0.846, 0.923, and 1.

108

(a) Average cycles completed (b) Average number of deadline misses (c) Average deadline miss delay

Figure 2: Results for different speed selection policies with throttling time of 10 s.

As our policy does not perform scheduling, it is insensi-
tive to the type of applications that may be running. We
used a periodic soft real-time system as an example applica-
tion. Each simulation consisted of 100 randomly generated
task sets of 20 tasks each for 30 different utilization levels
(Ulevel = 0.05, 0.1, · · · , 1.5), for a total of 3,000 task sets.
The utilization level signifies how loaded the processor is;
a utilization level of 1 or greater means that the system is
overloaded. Task periods ranged from 1 s to 10 s, with task
execution times from 0.2 to 0.8 of the periods. For under-
loaded systems, a background job was also added. Each task
set was simulated for a duration of 1,000 s.

For each run, we recorded the following data: number of
cycles completed, number of deadline missed, average delays
for jobs that missed their deadlines, and associated transi-
tion overhead, if applicable. Note that while we use a soft
real-time system as an example here, metrics such as the
number of cycles completed are relevant for general-purpose
computing systems as well. In addition, while maximizing
the work completed is not the same as maximizing the num-
ber of deadlines met, our results show that completing more
work often leads to meeting more job deadlines.

6.2 Negligible Transition Overheads Case
We now discuss the simulation results for the different

speed selection policies: (i) the näıve approach where the
highest and lowest speed levels are both used (corresponding
to the speeds of 1 and 0.462, respectively), (ii) the one speed
approach where the highest of the low speed levels is used the
entire time (corresponding to the speed of 0.846), and (iii)
the best approach where the lowest of the high and highest of
the low speed levels are selected (corresponding to the speeds
of 0.923 and 0.846, respectively). Note here that the näıve
approach could represent the policy used by Thermal Moni-

tor 2 described in Section 2. We did not specifically compare
with Thermal Monitor 1 since it is non-configurable. The
initial chip temperature is set to Tmax since we are inter-
ested in the performance of the system once the processor
starts to throttle. The throttling time used for this set of
simulations is 10 s, which is similar to the default throttling
time for the 2.13GHz Pentium M-770 CPU [9].

The results are shown in Figure 2(a)–(c), which compare
the average number of cycles completed, average number
of deadline misses, and average delays for jobs that missed
their deadlines, respectively. The average number of cycles
completed is compared with the number of cycles completed
when using the equilibrium speed described in Section 2. We

can see that the proposed speed selection policy consistently
outperforms the näıve policy in terms of all performance
metrics. A comparison between the näıve and best speed se-
lection policies reveals that our approach completes 47.65%
on average and up to 67.99% more cycles than the näıve
approach. Our policy also improves the number of cycles
completed by the one speed policy by 1.60% on average and
up to 3.29%. When compared to the number of cycles com-
pleted using the equilibrium speed, our approach deviates
on average by only 2.76% and up to 2.93%. In addition,
our policy reduces deadline misses by 59.38% on average
and up to 100% compared to the näıve policy. Our policy
also reduces deadline misses compared to the one speed ap-
proach by 3.65% on average and up to 45.74%. Note that
the best policy would yield more substantial performance
improvements over the one-speed policy for systems with
fewer speed levels and/or when the lowest of the high speed
differs significantly from the equilibrium speed.

Figure 3(d)–(f) show the effect of different throttling times
(i.e., the times the processor spends at the low speed) on
system performance when using our policy. We used the
throttling times of 0.1 s, 0.5 s, 1 s, 5 s, and 10 s. Recall that
the 2.13 GHz Pentium M-770 CPU uses a throttling time of
about 10 s [9]. With a throttling time of 0.1 s, our DVFS con-
trol policy completes between 0.20% and 2.51% on average
and up to between 0.22% and 2.68% more cycles than the
throttling times of 0.5 s, 1 s, 5 s, and 10 s, respectively. When
compared to the policy that uses the equilibrium speed, our
policy completes 0.25% fewer cycles (using the throttling
time of 0.1 s). Last but not least, the smallest throttling
time (0.1 s) reduces deadline misses by between 8.14% and
9.42% on average and up to 100%.

6.3 Non-Negligible Transition Overheads Case
As described in Section 4, the constants associated with

transition overheads that we need to consider are α, β, and
a, which we set to 10 us, 5 us, and 100 us, respectively. Since
these constants are much smaller than the die thermal time
constants, it is reasonable to assume that the die tempera-
ture does not change during speed transitions.

Figure 4 plots the net number of cycles completed (i.e.,
with transition overheads considered) as a function of the
throttling times using our DVFS control policy. By solv-
ing Eq. 14, we know that the optimal throttling time is
43.23ms and this is confirmed by the results of the sim-
ulation. As expected, when transition overheads are non-
negligible, switching from the low to high speeds more often

109

(a) Average cycles completed (b) Average number of deadline misses (c) Average deadline miss delay

Figure 3: Results for different throttling times for best speed selection policy.

Figure 4: Average number of cycles completed as

a function of throttling times when transition over-

heads are considered.

than optimal decreases the rate of computation due to the
increasing proportion of time spend idle during transitions.
On the other hand, switching very infrequently can reduce
the computation rate because a lower percentage of time can
be spent at the higher speed.

7. CONCLUSIONS & FUTURE WORK
We proposed an optimal online DVFS control policy to

maximize instruction cycles subject to a peak temperature
constraint. Our solution is applicable to any processor with
discrete speed levels and non-negligible transition overheads.
Our policy completed 47.7% on average and up to 68.0%
more cycles when compared to the näıve policy.

We plan on extending our proposed policy to consider
the time interval before the system reaches the threshold
temperature for the first time. To handle workloads where
tasks have different power consumption, modifications to the
proposed policy are needed. Finally, we would like to extend
our policy to consider multiprocessor architectures.

8. REFERENCES
[1] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to

manage energy and temperature. J. of the ACM,
54(1):1–39, Mar. 2007.

[2] T. Chantem, X. S. Hu, and R. P. Dick. Online work
maximization under a peak temperature constraint.
Technical report, University of Notre Dame, June
2009.

[3] J.-J. Chen, C.-M. Hung, and T.-W. Kuo. On the
minimization of the instantaneous temperature for
periodic real-time tasks. In Proc. Real-Time and

Embedded Technology and Applications Symp., pages
236–248, Apr. 2007.

[4] J.-J. Chen, S. Wang, and L. Thiele. Proactive speed
scheduling for real-time tasks under thermal
constraints. In Proc. Real-Time and Embedded

Technology and Applications Symp., pages 141–150,
Apr. 2009.

[5] S. H. Gunther, F. Binns, D. M. Carmean, and J. C.
Hall. Managing the impact of increasing
microprocessor power consumption. Intel Technology

Journal, 5(1):1–9, Feb. 2001.

[6] Intel Core Duo processor and Intel Core Solo
processor on 65 nm process datasheet. http://www.
intel.com/design/mobile/datashts/309221.htm.

[7] T. Karkhanis and J. E. Smith. Automated design of
application specific superscalar processors: An
analytical approach. In Proc. Int. Symp. Computer

Architecture, pages 402–411, 2007.

[8] Y. Liu, R. P. Dick, L. Shang, and H. Yang. Accurate
temperature-dependent integrated circuit leakage
power estimation is easy. In Proc. Design, Automation

& Test in Europe Conf., pages 204–209, Mar. 2007.

[9] A. Mallik, J. Cosgrove, R. P. Dick, G. Memik, and
P. Dinda. PICSEL: Measuring user-perceived
performance to control dynamic frequency scaling. In
Proc. Int. Conf. Architectural Support for

Programming Languages and Operating Systems, pages
70–79, Mar. 2008.

[10] R. Rao and S. Vrudhula. Performance optimal
processor throttling under thermal constraints. In Int.

Conf. on Compilers, Architecture, and Synthesis for

Embedded Systems, pages 257–266, Oct. 2007.

[11] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers.
Exploiting structural duplication for lifetime reliability
enhancement. In Proc. Int. Symp. Computer

Architecture, pages 520–531, June 2005.

[12] S. Wang and R. Bettati. Reactive speed control in
temperature-constrained real-time systems. In Proc.

Euromicro Conf. Real-Time Systems, pages 161–170,
July 2006.

[13] Y. Yang, Z. P. Gu, C. Zhu, R. P. Dick, and L. Shang.
ISAC: Integrated space and time adaptive
chip-package thermal analysis. IEEE Trans.

Computer-Aided Design of Integrated Circuits and

Systems, pages 86–99, Jan. 2007.

[14] S. Zhang and K. S. Chatha. Approximation algorithm
for the temperature-aware scheduling problem. In
Proc. Int. Conf. Computer-Aided Design, pages
281–288, Nov. 2007.

110

