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Online dynamic power management (DPM) strategies refer to strategies that attempt to make
power-mode-related decisions based on information available at runtime. In making such decisions,
these strategies do not depend upon information of future behavior of the system, or any a priori
knowledge of the input characteristics. In this paper, we present online strategies, and evaluate
them based on a measure called the competitive ratio that enables a quantitative analysis of the
performance of online strategies. All earlier approaches (online or predictive) have been limited to
systems with two power-saving states (e.g., idle and shutdown). The only earlier approaches that
handled multiple power-saving states were based on stochastic optimization. This paper provides
a theoretical basis for the analysis of DPM strategies for systems with multiple power-down states,
without resorting to such complex approaches. We show how a relatively simple “online learning”
scheme can be used to improve the competitive ratio over deterministic strategies using the notion of
“probability-based” online DPM strategies. Experimental results show that the algorithm presented
here attains the best competitive ratio in comparison with other known predictive DPM algorithms.
The other algorithms that come close to matching its performance in power suffer at least an
additional 40% wake-up latency on average. Meanwhile, the algorithms that have comparable
latency to our methods use at least 25% more power on average.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of
Systems

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Dynamic, power management, online algorithms

1. INTRODUCTION

Power management in embedded computing systems is achieved by actively
changing the power consumption profile of the system by putting its components
into power/energy states sufficient to meeting functionality requirements. For
example, an idling component (such as a disk drive) can be put into a slowdown
or shutdown state. Of course, bringing such a component back to the active
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state may require additional energy and/or latency to service an incoming task.
The input to the problem we consider here is the length of an upcoming idle
period, and the decision to be made is whether to transition to a lower power
dissipation state while the system is idle. There are several issues in coming
to this decision intelligently. For instance, immediate shutdown—that is, shut-
down as soon as an idle period is detected—may not save overall energy if the
idle period is so short that the powering-up costs are greater than the energy
saved in the sleep state. On the other hand, waiting too long to power down
may not achieve the best energy reductions possible. Thus, there exists a need
for effective (and efficient) decision procedures to manage power consumption.
Dynamic power management (DPM) attempts to make such decisions (usually
under the control of the operating system) at runtime based on the dynam-
ically changing system state, functionality, and timing requirements [Benini
and De Micheli 1998; Benini et al. 2001; Chung et al. 1999a; Hwang et al. 1996;
Irani et al. 2002; Ramanathan et al. 2000; Shukla and Gupta 2001; Srivastava
et al. 1996].

In a survey of DPM techniques in Benini et al. [2000], the authors classify
DPM strategies into two main groups: (a) predictive schemes and (b) stochastic
optimum control schemes. Predictive schemes attempt to predict the timing of
future input to the system and schedule shutdown (usually to a single lower
power state) based on these predictions. Stochastic optimum control is a well-
researched area [Benini et al. 1999; 2000; Chung et al. 1999a; Qiu and Pedram
1999; Qiu et al. 1999; Simunic et al. 1999]. The chief characteristic of these
approaches is the construction (and validation) of a mathematical model of the
system that lends itself to a formulation of a stochastic optimization problem.
Then strategies to guide the system power profile are devised that achieve the
most power savings in presence of the uncertainty related to system inputs.
While several useful and practical techniques have been developed using the
predictive and stochastic optimum control schemes, it is difficult to develop
bounds on the quality of the results without extensive simulations and/or model
justification.

2. COMPETITIVE ANALYSIS AND ITS LIMITATIONS

We approach DPM as an inherently “online” problem in that an algorithm gov-
erning power management must make decisions about the expenditure of re-
sources before all the input to the system is available [Borodin and El-Yaniv
1998]. Specifically, the algorithm does not learn the length of an idle period
until the moment that it ends. Analytical solutions to such online problems are
often best characterized in terms of a competitive ratio [Phillips and Westbrook
1999] that compares the cost of an online algorithm to the optimal offline solu-
tion that knows the input in advance. Note that the offline algorithm is not a
realistic algorithm, since it knows the length of the idle period in advance. It is
just used as a point of comparison to quantify the performance loss due to the
fact that a DPM strategy must make decisions with only partial information.
To be specific, we say that an algorithm is c-competitive if, for any input, the
cost of the online algorithm is bounded by c times the cost of the optimal offline
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Table I. Values for the Power Dissipation and Start-up Energy for the IBM Mobile
Hard-Drive

State Power Consumption (W) Start-up Energy (J) Transition Time to Active
Sleep 0 4.75 5 s
Stand-by 0.2 1.575 1.5 s
Idle 0.9 0.56 40 ms
Active 1.9 0 0

algorithm for that input. The offline algorithm has access to the entire input
before committing to any decisions. For DPM, the cost of an algorithm is the
total amount of energy consumed. The competitive ratio (CR) of an algorithm
is the infimum over all c such that the algorithm is c-competitive.

Competitive analysis [Borodin and El-Yaniv 1998]—that is, analysis to de-
termine bounds on the competitive ratio—can be done either as a case analysis
of the various adversarial scenarios [Karlin et al. 1990; Ramanathan 2000]
or through theorem-proving or automatic model checking [Shukla and Gupta
2001]. Competitive analysis has proven to be a powerful tool in providing a guar-
antee on the performance of an algorithm for any input. Competitive analysis is
valuable in situations where it is impractical to obtain and process information
for predicting future inputs. It also provides an assurance for the designers of
the algorithm about the worst possible behavior of an online algorithm. For
example, if an online strategy has a competitive ratio of 2, which assures the
designer that no matter what input sequence is provided to the strategy, it will
never cost the strategy more than twice the cost incurred by the best possible
strategy.

There are two chief limitations of the competitive analysis approach to DPM
that we seek to address in this paper. The first is that the results tend to be
overly pessimistic due to the fact that they examine worst-case behavior. Thus,
there is a need to refine the CR bounds that take into account typical input
behavior. In many applications, there is a structure in the input sequence that
can be utilized to fine-tune online strategies and improve their performance.

The second problem with our earlier work on CR-based DPM strate-
gies [Karlin et al. 1990; Ramanathan et al. 2000, 2002] is that the system
model consists of devices with only two power-saving states, namely an idle
state and a shutdown state. This is a limitation of most predictive strategies as
well [Benini et al. 2000]. In contrast, most real systems consist of components
with multiple power states. There are two kinds of systems here: systems with
multiple shutdown states as well as systems with multiple operating states. For
instance, Table I shows the power states of a portable hard drive [IBM 1996]
that consists of three low-power states in which a device can be when it is not
processing any requests. Radio modems represent devices that can often be in
multiple active states (for instance, transmitting data at various power levels
to the radio transmitter). We do not address the problem of choosing among
different operating states in this paper.

For systems with more than one device, our protocols can be applied to each
device separately. Each device experiences periods of idle time that may or may
not coincide with the idle periods experienced by other devices in the system.
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A power management strategy can then be applied to a particular device during
the idle periods experienced by that device. There will be some dependence
between performances for different devices in cases where a request requires
more than one device to be satisfied. In these situations, a device that is in an
active state may experience some latency because it has to wait for another
device to transition from a low-power state to the active state before either can
begin work. In this paper, we focus on performance for a single device, although
this phenomenon would be an interesting direction for future work.

2.1 Related Work

Many strategies for dynamic management of power and energy have been pro-
posed and studied. These include predictive strategies [Hwang et al. 1996;
Srivastava et al. 1996], stochastic-modeling-based strategies [Benini et al. 1999;
Qiu and Pedram 1999], session clustering and prediction strategies [Lu and
De Micheli 1999], online strategies [Ramanathan et al. 2000], and adaptive-
learning-based strategies [Chung et al. 1999b]. A survey of DPM strategies
that covers the classes of algorithms in predictive and stochastic optimum con-
trol categories can be found in Benini et al. [2000]. Lu et al. [2000] present a
quantitative comparison of various existing management strategies.

Many predictive dynamic power management strategies [Benini et al. 1999;
Chung et al. 1999a; Hwang et al. 1996; Karlin et al. 1990; Lu and De Micheli
1999; Ramanathan et al. 2000; Srivastava et al. 1996] use a sequence of past
idle period lengths to predict the length of the next idle period. These strategies
typically describe their prediction for the next idle period with a single value.
Given this prediction, they transition to the power state that is optimal for the
predicted idle period length. In case the prediction is wrong, they transition to
the lowest power state if the idle period extends beyond a fixed threshold value.
For the sake of comparison with other approaches, we call these predictive DPM
schemes single-value prediction (SVP) schemes. Of particular interest is the
work of Chung et al. [1999b] that addresses multiple idle state systems using a
prediction scheme based on adaptive learning trees. Their method has shown
an impressively high hit ratio in its prediction.

In the past, stochastic-control-based methods as in Benini et al [1999; 2000];
Simunic et al. [1999]; Chung et al. [1999a]; Qiu and Pedram [1999]; and
Qiu et al. [1999] have been limited because they make assumptions about the
characteristic probability distribution of the input/job arrivals, the service time
distribution of the device, and so on. Although the policies obtained are optimal
given these assumptions, there are no guarantees that the assumptions will
always hold. These problems have been addressed to some extent in Chung
et al. [1999b]; and Lu and De Micheli [1999]. Recently the stochastic-modeling
approach has been extended so that the assumption that interarrival times
are exponentially distributed can be removed [Glynn et al. 2000]. Stochastic
modeling has also been extended to systems which can be modeled by petri
nets [Qiu et al. 2000]. One drawback of these approaches is that they require
solving computationally expensive optimization problems to derive the optimal
solutions. If the usage patterns for the device change, the algorithm has to be
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reoptimized to adjust to the new behavior. In Chung et al. [1999a], an adaptive
technique has been proposed which tries to overcome this limitation. The au-
thors use sliding windows to keep a long enough history of the input arrivals,
and estimate the parameters of the arrival Markov processes. However, this
method is complex because they have to solve the optimization problem to find
the optimal strategy in a clock-driven or event-driven manner.

There are also a few existing results on competitive analysis of DPM strate-
gies in the online algorithms literature. Some of this work does not address
DPM explicitly, but the general framework applies to DPM as well. An example
of this is the now classical result described in Phillips and Westbrook [1999]
that shows that 2 is the best competitive ratio achievable by any deterministic
online algorithm. Probabilistic analysis for online DPM algorithms in two-state
systems has been given in Karlin et al. [1990] and Keshav et al. [1995]. They as-
sume that the distribution over the upcoming idle period is known and optimize
the algorithm based on that distribution. They give a method to determine the
best online algorithm, given a distribution, and show that for any distribution
the expected cost of this online algorithm is within a factor of e/(e − 1) ≈ 1.58
of the expected cost of the optimal offline algorithm. This result is tight in that
there is a distribution for which the ratio is exactly e/(e−1), although for some
distributions the ratio may be less.

2.2 Our Contributions and Paper Organization

In Section 4 we present a deterministic algorithm for DPM for multistate de-
vices and show that it is 2-competitive. This result, which extends the earlier
analysis described in Phillips and Westbrook [1999], is tight in the sense that
there is no constant c < 2 such that there is a deterministic c-competitive algo-
rithm that works for all multiple power-down state devices. However, it may be
possible to have a competitive ratio less than 2 for a specific device, depending
on the parameters of the device (e.g., number of states, power dissipation rates,
start-up costs, and so on). Note that this deterministic algorithm focuses on a
single idle period, and does not depend on any history of previous idle periods.
Thus, it is nonadaptive in that it does not use any information about previous
idle periods to tune its behavior.

As we have argued above, competitive analysis often yields unduly pes-
simistic results. Indeed, our goal is to devise a DPM strategy whose total energy
expenditure is much lower than twice the optimal offline algorithm. We show
that by keeping track of a sequence of past idle periods we can improve the
performance of the 2-competitive deterministic strategy in practice by adapting
the behavior of the strategy to patterns observed in the input sequence. We
do this in Section 5 by modeling the future input by a probability distribution
that is learned from the recent history of the length of idle periods. In doing so,
we avoid some of the problems with many of the previous strategies mentioned
above.

One of the chief limitations of a single-valued prediction (SVP) approach
is that it fails to capture uncertainty in the prediction for the upcoming idle
period length. For example, if a very short idle period and a very long idle
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period are equally likely, these methods are forced to pick a single prediction
and pay a penalty in the likely event that the prediction is wrong. Using a
probability distribution to model the length of the upcoming idle period allows
for a much richer prediction, so that the algorithm can optimize in a way that
takes the nature of this additional information into account. Furthermore, we
make no assumptions about the form of the distribution governing idle period
length, which means that our method can automatically adapt to a variety of
applications, and also applies to nonstationary input arrivals.

In Section 5.1 we derive analytical bounds for an online algorithm for DPM
that knows the probability distribution governing the length of the upcoming
idle period. Section 5.2 provides a systematic means of dynamically construct-
ing an estimate for the probability distribution based on online observations and
combining it with the algorithm from the previous section to build an online
power management strategy. Experimental results in Section 7 demonstrate
the utility of our strategy in balancing power usage with latency.

3. SYSTEM MODEL

Consider a device that can be in one of the k + 1 power states denoted by
{s0, . . . , sk}. The power consumption for state i is denoted by αi. The states are
ordered so that αi > α j as long as i < j . Thus, state s1 is the active state that is
the highest power consumption state. Any strategy for an individual idle period
can be described by a sequence of thresholds, each of which is associated with
a power consumption state. As soon as the idle periods extend beyond a given
threshold, the device transitions to the associated power consumption state.

From the manufacturer’s specification, we are also given the transition power
pij, and transition times tij, to move from state si to sj . Usually, the energy
needed and time spent to go from a higher (power) state to a lower (power) state
is negligible, whereas the converse is not true. Thus, we simplify the model by
considering only the time and power necessary to power up the system. Fur-
thermore, all of the algorithms considered in this paper have the property that
they only transition to the active state when powering up and never transition
to an intermediate higher-powered state. As a result, we only need the time
and total energy consumed in transitioning up from each state i to the active
state (state 0). The total energy used in transitioning from state i to the active
state is denoted by βi.

We note that in cases where the time and energy cost incurred in transi-
tioning to lower-power consumption states is nonnegligible, they can be easily
incorporated by folding them into the corresponding power-up parameters. This
can be done as long as the time and energy used in transitioning down is addi-
tive. That is, we require that for i < j < k, the cost to go from i to j and then
from j to k is the same as the cost of going from i directly down to k.

The input to the DPM algorithm is simply a sequence of idle periods. For
each idle period, the DPM is notified when the idle period begins and then
again when the idle period ends. This is the only information required by our
DPM. In our experiments the idle periods are derived by our simulator, which
receives a time-stamped sequence of requests for service. With each request,
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the simulator is told the time of its arrival and the length of time it will take to
satisfy the request. If the device is busy when a new request arrives, it enters
a queue and is served on a first-come-first-serve basis. In this case, there is no
idle period and the device remains active through the time that the request
is finished. This means that the number of idle periods is generally less than
the number of requests serviced. Whenever a request terminates and there are
no outstanding requests waiting in the system, an idle period begins. In these
situations, the DPM is invoked to determine which power consumption states
the device should transition to and at what times.

If the device is not busy when a new request arrives, it will immediately
transition to the active state to serve the new request if it is not already there.
In the case where the device is not already in the active state, the request can
not be serviced immediately, but will have to incur some latency in waiting
for the transition to complete. This delay will cause future idle periods to be
shorter. In fact, if a request is delayed, some idle periods may disappear. Thus,
we have an interesting situation where the behavior of the algorithm affects
future inputs (idle period lengths) given to the algorithm.

Note also that delaying servicing a request will tend to result in lower power
usage. For instance, consider the extreme case where the power manager re-
mains in the deepest sleep state while it waits for all the requests to arrive
and then processes them all consecutively. This extreme case is not allowed
in our model, since we require that the strategy transition to the active state
and begin to work on a request as soon as one appears. However, it illustrates
the natural trade-off that occurs between power consumption and latency. Our
experimental results explore this trade-off for the set of algorithms studied. A
more extensive discussion of this trade-off is presented in Ramanathan et al.
[2000].

In the next two sections we present our analysis for the deterministic and
probability-based algorithms. In this analysis, we do not take into account the
delay incurred in returning to the active state because the analysis focuses on
an individual idle period. These sections address the problem of minimizing
total energy expenditure, given that the length of the upcoming period is ar-
bitrary (deterministic case) or is governed by a fixed probability distribution
(probability-based case). The empirical evaluations incorporate the effect of
start-up latency as an entire sequence of requests for service arrive through
time.

4. THE DETERMINISTIC ONLINE ALGORITHM

We now present our deterministic algorithm for online DPM. The basic idea
is that the online algorithm tries to mimic the behavior of the optimal offline
algorithm. At each point in time t, the algorithm is in the state that the optimal
algorithm would have chosen if the length of the idle period were exactly t.

To get the optimal cost, we plot each line c = αit + βi. This is the cost of
spending the entire interval in state i as a function of t, the length of the
interval. Take the lower envelope of all of these lines. Let us call this function,
LE(t). The optimal cost for an interval of length t is LE(t) = mini{αit +βi}. The
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Fig. 1. Energy consumption for each state for a four-state system. Each state is represented by a
line that indicates the energy used if an algorithm stays in that state as a function of the length
of the idle period. For each state, the slope is the power dissipation rate and the y-intercept is the
energy required to power-up from that state.

online algorithm—called the lower envelope algorithm (LEA)—will also follow
the function LE. It will remain in the state that realizes the minimum in LE
and will transition at the discontinuities of the curve. That is, LEA will remain
in state j as long as α j t + β j = mini{αit + βi}, for the current time t.

For j = 1 to k, let t j be the solution to the equation α j t + β j = α j−1t + β j−1,
where t j is the time that LEA will transition from state j − 1 to state j . We
will assume here that we have thrown out all the lines that do not appear on
the lower envelope at some point. This is equivalent to the assumption that
t1 < t2 < · · · < tk−1 < tk . (See Figure 1).

THEOREM 1. The lower envelope algorithm is 2-competitive.

The proof of Theorem 1 is shown in the Appendix.
As emphasized earlier, this algorithm does not take into account input pat-

terns. The worst-case scenario, obtained via Theorem 1, shows that the energy
cost resulting from the online decisions can be no worse than two times the
energy cost of the optimal offline strategy, which knows the input sequence in
advance. We show later that depending on request arrival patterns, this worst-
case bound may not really happen, and the empirical ratio of the online to
offline costs may in fact be much lower. As shown in Qiu and Pedram [1999],
Chung et al. [1999b], and Benini et al. [1999], input sequences are often interre-
lated, and hence modeling of the input pattern and exploiting that knowledge
in the design of the algorithm can help bridge the gap between the perfor-
mance of online strategy and that of the optimal offline strategy. In the next
section, we discuss our probability-based algorithm and show that if the proba-
bility distribution governing the length of the idle period is known before hand,
the worst-case competitive ratio can be improved by 21%, with respect to the
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deterministic case. Moreover, we show through experimental evaluation that
this worst-case bound is pathological. In fact, we can bring the energy cost of
the online algorithm within 27% of the optimal offline one.

5. THE PROBABILITY-BASED ONLINE ALGORITHM

5.1 Optimizing Power Based on a Probability Distribution

Let us assume that the length of the idle interval is generated by a fixed, known
distribution whose density function is π , and devise a method to optimize power
management decisions. We first discuss systems with two states and then give
our generalization to the multistate case. Let β be the start-up energy of the
sleep state, and α the power dissipation of the active state. Suppose that the
online algorithm uses τ as the threshold at which time it will transition from
the active state to the sleep state if the system is still idle. In this case, the
expected energy cost for the algorithm for a single idle period will be∫ τ

0
π (t)(αt) dt+

∫ ∞
τ

π (t)[ατ + β] dt. (1)

The best online algorithm will select a value for τ that minimizes this expres-
sion. The offline algorithm that knows the actual length of an upcoming idle
period will have an expected cost of∫ β/α

0
π (t)(αt) dt+

∫ ∞
β/α

π (t)β dt. (2)

It is known for the two-state case that the online algorithm can pick its thresh-
old τ so that the ratio of its expected cost to the expected cost of the optimal
algorithm is at most e/(e − 1) [Karlin et al. 1990]. That is, for any π and any α
and β,

minτ

{∫ τ

0
π (t)(αt) dt+

∫ ∞
τ

π (t)[ατ + β] dt
}

∫ β/α

0
π (t)(αt) dt+

∫ ∞
β/α

π (t)β dt
≤ e

e − 1
. (3)

This is optimal, in that for any α and β there is a distribution π such that this
ratio is at least e/(e − 1).

Let us now consider the multistate case. As in the previous section, let t j be
the solution to the equation α j t + β j = α j−1t + β j−1. t j is the time that LEA
will transition from state j −1 to state j . We assume here that we have thrown
out all the lines that do not appear on the lower envelope at some point. This is
equivalent to the assumption that t1 < t2 < · · · < tk−1 < tk . For ease of notation,
we define t0 to be 0 and tk+1 to be ∞. The cost (expected energy consumption)
of the optimal offline algorithm is

k∑
i=0

∫ ti+1

ti

π (t)[αit + βi] dt. (4)
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Now to determine the online algorithm, we must determine k thresholds, where
the threshold τi is the time at which the online algorithm will transition from
state i − 1 to state i. In the spirit of the deterministic online algorithm for the
multistate case, we let τi be the same as the threshold, which would be chosen if
i−1 and i were the only two states. We call this algorithm the probability-based
lower envelope algorithm (PLEA). The proof of the following theorem appears
in the Appendix.

THEOREM 2. For any distribution, the expected cost of the probability-based
lower envelope algorithm is within a factor of e/(e − 1) of the expected cost for
the optimal offline algorithm.

5.2 Learning the Probability Distribution

While we have proven the competitive bounds regardless of the chosen idle
time probability distribution, the practical problem of finding π (t) to guide the
PLEA algorithm remains. Our approach is to learn π (t) online. Accordingly, the
algorithm that uses PLEA in conjunction with our scheme to learn the proba-
bility distribution is called the online probability-based algorithm (OPBA). It
works as follows: a window size w is chosen in advance and is used throughout
the execution of the algorithm. The algorithm keeps track of the last w idle
period lengths and summarizes this information in a histogram. Periodically,
the histogram is used to generate a new power management strategy.

The set of all possible idle period lengths (0,∞) is partitioned into n intervals,
where n is the number of bins in the histogram. Let ri be the left endpoint of
the ith interval. The ith bin has a counter that indicates the number of idle
periods among that last w idle periods whose length fell in the range [ri, ri+1).
The bins are numbered from 0 through n− 1, r0 = 0, and rn = ∞.

The last w idle periods are held in a queue. When a new idle period is com-
pleted, the idle period at the head of the queue is deleted from the queue. If this
idle period falls in bin i, then the counter for bin i is decremented. The new idle
period is added to the tail of the queue. If this idle period length falls into bin
j , the counter for bin j is incremented. Thus, the histogram always includes
data for the last w idle periods. Our experimental results in Section 7 include
a study experimenting with values for w.

The counter for bin i is denoted by ci. The threshold for changing states
is selected among n possibilities: that is, r0, . . . , rn−1 (the lower end of each
range). We estimate the distribution π by the distribution that generates an
idle period of length ri with probability ci/w for each i ∈ {0, . . . , n−1}. The sum
of the counters is the window length w. Thus, the threshold is taken to be

arg min
rt

t−1∑
j=1

(c j

w

)
r j (αi − αi−1)+

n∑
j=t

(c j

w

)
[rt(αi − αi−1)+ (βi−1 − βi)]. (5)

In order to be useful as a decision procedure, this algorithm must be imple-
mented efficiently. We have implemented the algorithm for finding the all k
thresholds in time O(kn), where k + 1 is the number of states and n is the
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Table II. A Snapshot of the Histogram Used in OPBA. Note that the Offline
Thresholds are 56, 2179, and 15 875, ms. The Number of Bins per State is 5

Bin Range: Low End Range: High End Range Size Count

1 0 11.2 11.2 35
2 11.2 22.4 11.2 2
3 22.4 33.6 11.2 4
4 33.6 44.8 11.2 7
5 44.8 56 11.2 4

6 56 478.8 422.8 5
7 478.8 901.6 422.8 3
8 901.6 1324.4 422.8 2
9 1324.4 1747.2 422.8 0

10 1747.2 2170 422.8 4

11 2170 4911 2741 7
12 4911 7652 2741 9
13 7652 10 393 2741 2
14 10 393 13 134 2741 5
15 13 134 15 875 2741 4

16 15 875 19 050 3175 2
17 19 050 22 225 3175 3
18 22 225 25 400 3175 1
19 25 400 28 575 3175 0
20 28 575 ∞ ∞ 1

number of bins in the histogram. Two important factors determine the cost
(in time expenditure) of implementing our method: (a) the frequency with
which the thresholds are updated and (b) the number of bins in the histogram.
These need to be minimized for policy implementation efficiency. The algo-
rithm runs the O(kn) time algorithm every time the thresholds are updated.
The frequency with which the thresholds are updated is the subject of one
set of experiments discussed in Section 7. Note that the cost to implement
our strategy is independent of w, the number of idle periods tracked in the
histogram.

Minimization of the number of bins used in the histogram must be balanced
with the fact that the finer grained the histogram, the more accurate our choice
of thresholds will be. Our experiments, as discussed in the following sections,
show that a finer grained binning is more important in some ranges than it is
in others. A way of addressing this problem (key to the success of the algorithm)
is to use the thresholds of the lower envelope algorithm to guide the selection
of the bins. Recall that these thresholds are the t1, . . . , tk defined in Section 4.
We then choose a constant c number of bins per state. The range from ti to ti+1
is divided into c equal-sized bins. Note that the running time of our algorithm
depends linearly on the number of bins, and hence depends linearly on c. For
this reason, it is important to select a small value for c. We experimented with
values for c ranging from 1 to 10 and the results only varied by 1%. We use a
value of c = 5 in all our results. Table II shows a sample histogram from our
experiments.
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Table III. This Figure Shows, for Each Trace, the Percentage
of Idle Periods for Which the Optimal Algorithm Chose to

Transition to Each State

Trace Length State 1 State 2 State 3 State 4
34 575 0.804 0.158 0.011 0.024
68 139 0.673 0.233 0.092 2.9E-05
36 161 0.824 0.065 0.084 0.025
7250 0.727 0.045 0.057 0.169

10 648 0.787 0.096 0.061 0.054
7154 0.571 0.043 0.179 0.205

72 026 0.783 0.145 0.056 0.013
5130 0.643 0.155 0.063 0.137

46 929 0.78 0.152 0.031 0.034
24 821 0.59 0.208 0.151 0.048
9587 0.741 0.126 0.028 0.104

16 110 0.608 0.107 0.199 0.084
18 131 0.79 0.15 0.016 0.042
14 774 0.858 0.056 0.019 0.066

6. EXPERIMENTAL DESIGN

6.1 Data Used in Our Experiments

To demonstrate the utility of our probability-based algorithm, we use a mobile
hard-drive from IBM [1996]. This drive has four power down states, as shown in
Table I. Here, the start-up energy refers to the energy cost in transitioning from
a state to the active state. For application disk access data, we used trace data
from auspex file server archive.1 From this data, we collected the arrival times
and lengths for requests for disk access for 0.4 million disk accesses divided
into multiple trace files, corresponding to different hours of the day.

Table III gives some data on these traces. The first column gives the number
of requests. The subsequent columns give information about the behavior of
the optimal algorithm when run on each trace. Specifically, they show for each
state the percentage of idle periods in which the optimal algorithm transitions
to that state. In all the traces, there is a high percentage of short sequences for
which the optimal strategy is to stay in the active state (shown in column 2).
The remaining percentages vary somewhat from trace to trace. All of the results
reported in this paper are an average of the results on each individual trace,
weighted by length.

6.2 Algorithm Test Suite

We compare OPBA and LEA to several other predictive algorithms presented in
the literature. The algorithms come in two groups. The algorithms in the first
group use a series of thresholds that determine when the algorithm will transi-
tion from each state to the next lower-power consumption state. OPBA and LEA
fall into this group. The second group is made up of single-valued prediction

1Auspex File Traces from the NOW project. Available at. http://now.cs.berkeley.edu/Xfs/Auspex
Traces/auspex.html.
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Table IV. Predictions versus Outcomes for the Exponential
Decay Algorithm. The Total Number of Idle Periods is 54 985

and the Total Number of Requests is 373 617

Active Stand-by Idle Sleep

Active 7631 3353 831 109
Stand-by 901 3144 4559 903
Idle 106 1414 1640 3416
Sleep 29 123 4897 7168

algorithms. They use a single prediction for the length of the upcoming idle
period and to transition immediately to the optimal state for that length. They
differ only in how they select a prediction for the length of the next idle period.

Optimal Offline Algorithm (OPT): This algorithm is assumed to know the length
of the idle period in advance. It selects the optimal power usage state for that
idle period and then transitions to the active state before the new request
arrives in order to service the incoming request just as it arrives.

Last Period (LAST): This is a single-valued prediction algorithm that uses the
last period as a predictor for the next idle period.

Exponential Decay (EXP): This algorithm, developed by Hwang et al. [1996],
keeps a single prediction for the upcoming idle period. After a new idle period
ends, the prediction is updated by taking a weighted average of the old pre-
diction and the new idle period length. Let p be the current prediction and l
the length of the last idle period. p is updated as follows:

p← λp+ (1− λ) l ,

where λ is a value in the range (0, 1). We use a value of 0.5 for λ.
Adaptive Learning Tree (TREE): This method uses an adaptive learning tree

to predict the value of the next period based on the sequence of recent idle
period lengths just observed. Details of this method can be found in Chung
et al. [1999b].

There are different possible versions of single-valued prediction algorithms
which are worth mentioning here. In describing these variations, we refer to the
offline thresholds, t1, . . . , tk , described in Section 5.2. The authors of the learning
tree algorithm observe that there are many idle periods that are very short. In
order to avoid transitioning to a lower-powered state for such short idle periods,
they keep their system in the active state until the first offline threshold t1 has
been passed. Only then do they transition to the predicted optimal state.

We ran all single-valued prediction algorithms with and without this initial
delay. We found that the results were not significantly different between the
two versions. In this paper, we only report results for the versions without this
delay. To see why the delay does not help significantly, we give some statistics
for the exponential decay algorithm when run without the delay in Table IV.
An entry in row i column j indicates the total number of times over all traces
that the online algorithm predicted that the optimal state for an upcoming idle
period would be j and the actual optimal state was i. Having a delay until time
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t1 helps only when the algorithm predicts that the optimal state is Stand-by,
Idle, or Sleep and the actual optimal state is active. The numer of times this
happens is the sum of the values in row “active,” columns “Stand-by,” “Idle,” and
“Sleep.” The degree of savings in latency is the largest for idle periods counted
in entry [Active, Sleep], less so for entry [Active, Stand-by], and even less for
[Active, Idle]. Given the values in the table, it is clear why having a delay does
not offer a significant saving in the total latency.

Another feature that the authors of the learning tree algorithm employ is
to transition to the active state after the threshold for the predicted optimal
state is reached. This is done in a hope that a job will arrive shortly there-
after and the system can avoid incurring any additional latency in powering
up after the new job has arrived. If no job arrives before the last threshold
tk , then the algorithm transitions to the lowest sleep state. To summarize, if
there are k + 1 states and the prediction is that state i will be the optimal
state for the upcoming idle period, the algorithm will transition immediately
to state i. If a new request has not arrived by time ti, the algorithm will tran-
sition back to the active state (state 0). Finally, if a request has not arrived
by time tk , the algorithm will transition to the deepest sleep state, state k. We
call this version of single-valued prediction algorithms the preemptive-wake-up
version.

The alternative preemptive wake-up is to transition immediately to state i if
that is the predicted optimal state and then to transition directly to the deepest
sleep state if a request has not arrived by time ti. We call this version the non-
preemptive-wake-up version. Naturally, the preemptive-wake-up version will
use more power, but will tend to incur less latency on average. We report results
for both versions of all the single-valued predictive algorithms used in the study.

7. EXPERIMENTAL RESULTS

7.1 Experimentation with Window Size

Figure 2 shows the average energy consumed per request as the window size
is varied. Note that beyond a certain threshold window size (below which the
predictions are not accurate anyway) the variation of energy consumption with
respect to the increase in window size is not large, indicating that our method
is fairly robust to choices in window size. Our method performs best with a
relatively small value for the window size, indicating that it is the most recent
history that is the most relevant predicting upcoming idle period length. It also
indicates that the distribution over idle period lengths is not necessarily stable
over time. However, the results get worse if the window size gets below 10,
showing that there need to be enough values to get a representative sample.
We selected a value of 50 for the window size that is used for the remainder of
the results presented.

7.2 Experimentation with Threshold Update Frequency

Figure 3 shows the average energy consumed per idle period as the frequency of
updating the thresholds is varied. As one would expect, as the interval between
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Fig. 2. Average energy consumed per request as a function of window size for the online
probability-based algorithm. The thresholds are updated every ten requests.

Fig. 3. Average energy consumed per request as a function of frequency of update for the online
probability-based algorithm. The window size is 50.

updates grows, so does the power usage. However, there do not to seem to be
large differences in the cost, so we adopt a frequency of update of 50.

7.3 Evaluation of Algorithm Performance

Table V shows the comparison of energy consumption and wake-up latency ef-
fects across a number of predictive DPM algorithms. The first column of num-
bers in Table V is the average energy used per request for each of the algorithms.
The second column is the ratio of this figure to the average energy consumed
per request by the optimal offline algorithm. Interestingly, there were some
traces where this ratio is less than 1 (although they always averaged out to be
greater than 1 over all the traces). The reason it is possible for an algorithm to
be better than the optimal offline algorithm on power consumption is because
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Table V. Energy Measured in Joules and Latency Measured in Milliseconds

Algorithm Average Energy Competitive Ratio Average Latency

Optimal 438.47 1 0
LEA 647.41 1.47 870.91
OPBA 446.45 1.01 1332.41
LAST: Preempt 868.51 1.9 1010.87
LAST: Non-preempt 477.96 1.09 2183.92
TREE: Preempt 990.53 2.25 1285.01
TREE: Non-preempt 460.44 1.05 2239.57
EXP: Preempt 550.75 1.25 1080.16
EXP: Non-preempt 458.98 1.04 1897.29

the optimal algorithm is always a forced wake-up preemptively before a request
arrives. This means that the optimal algorithm incurs no additional latency due
to waking up the disk drive. Recall that since there is a power-latency trade-off,
this will tend to penalize the optimal algorithm with respect to power usage.

The average latency per request is shown in the final column of the figure.
The latency is averaged over the number of requests, not the number of idle
periods. These two numbers are different, since some requests may arrive
while the device is busy working on other jobs or powering-up. In these cases,
the incoming request would not correspond to an idle period. As an example,
we refer back to the statistics for the exponential delay algorithm in Table IV.
The total number of idle periods over all traces is 54 985, whereas the total
number of requests is 373 617. Note that the algorithm only experiences the
full 5 s of transition time when a request arrives and the algorithm is in the
“Sleep” state. (Refer to Table I for the transition times for the various states.)
For single-value prediction algorithms without predictive wake-up, this only
happens if the algorithm predicts that the “Sleep” state will be the optimal
state for the upcoming idle period or when the idle period actually lasts so
long that the algorithm discovers that the sleep state was in fact the optimal
state. The number of times this happens is the sum of the numbers in entries
which are either in column “Sleep” or row “Sleep” (or both). The algorithm only
experiences the 1.5 s delay in transitioning from the “Stand-by” state to the
“Active” state for those idle periods counted in entries [Active, Stand-by], [Idle,
Stand-by], and [Stand-by, Stand-by].

The final results in Table V are also shown graphically in Figure 4, which
plots the power usage (middle column from Table V) against the average latency
(last column from Table V). The OPBA exhibits the lowest power consumption
among all the online algorithms. The other algorithms that come close to match-
ing its performance in power (the nonpreemptive versions of LAST, TREE, and
EXP) all suffer at least an additional 40% latency on average. Meanwhile, the
algorithms that have a lower average latency than OPBA (LEA and the pre-
emptive versions of LAST, TREE, and EXP) all use at least 25% more power
on average. Thus, OPBA is the most successful algorithm in balancing power
usage as well as latency incurred.

Finally, we study the the effect of variable wake-up time, since many devices
vary somewhat in the time it takes to transition from one state to another.
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Fig. 4. Energy is measured in joules and latency is measured in milliseconds.

Table VI. Latency as Variation in Transition Time Increases. Each
Transition Time is Multiplied by a Number Generated Unformly at

Random from the Range [1− ε, 1+ ε]. Latency is measured in
Milliseconds

ε LEA OPBA EXP-Preempt EXP-Non-Preempt

0 879 1490 1092 1905
0.25 887 1543 1089 1945
0.5 894 1585 1108 2001
0.75 931 1631 1151 2116

We study the top performers for latency and power when random noise is added
to the time to transition to the active state. Every time a transition is performed,
we multiply the time to transition by a number generated unformly at random
from the range [1− ε, 1+ ε] for different values of ε. The results are shown in
Table VI. We did not include the power usage because it does not vary signif-
icantly for different values of ε. All of the methods suffer a slight degradation
in performance as ε increases. The variation seems to have a similar effect on
all algorithms studied.

8. CONCLUSION AND FUTURE DIRECTIONS

We have presented a deterministic online algorithm for dynamic power man-
agement on multistate devices and proved that it is 2-competitive, and that
this bound is tight. We improve upon this bound considerably by devising a
probability-based scheme. To support this strategy in an online DPM frame-
work, we provide a method to efficiently construct a probabilistic model for the
length of the upcoming idle period based on online observations. Our experi-
ments show that the algorithm presented in this paper attains the best per-
formance in practice, in comparison to other known predictive DPM algorithm.
The other algorithms that come close to matching its performance in power all
suffer at least an additional 40% wake-up latency on average. Meanwhile, the
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algorithms that have comparable latency to our methods all use at least 25%
more power on average. Our future plans include extension of this work into
systems with multiple active as well as power-down states.

Our experimental framework is available on our website2 for testing a range
of online DPM algorithms using a Java applet interface. The interface allows
users to upload their data and evaluate our algorithms and other known algo-
rithms that we have implemented in our simulation framework.

APPENDIX

PROOF OF THEOREM 1. First, we establish that the worst case for the algorithm
will always be just after a transition time. Consider the time t j + γ , for some
0 ≤ j ≤ k and 0 ≤ γ < t j+1 − t j . For any value of γ in the given range, the
optimal cost will be

α j (t j + γ )+ β j .

For any value of γ in the given range, the online cost will be

j−1∑
l=0

αl (tl+1 − tl )+ α jγ + β j .

The ratio of these two will be maximized for γ = 0.
Now suppose that the interval ends just after t j for some 1 ≤ j ≤ k. Using

the cost for the online and offline determined above, the ratio of the online cost
to the offline cost will be

j−1∑
l=0

αl (tl+1 − tl )+ β j

α j t j + β j
= 1+

j−1∑
l=0

αl (tl+1 − tl )− α j t j

α j t j + β j
.

Thus, it is sufficient to prove that

j−1∑
l=0

αl (tl+1 − tl )− α j t j ≤ α j t j + β j . (6)

Each tl was chosen so that

(αl−1 − αl )tl = βl − βl−1,

so we can substitute these values into inequality (6) to get that

(β1 − β0)+ (β2 − β1)+ · · · + (β j − β j−1)− α0t0 ≤ α j t j + β j .

Collapsing the telescoping sum, we get that

β j − β0 − α0t0 ≤ α j t j + β j .

2OSDPM Website at UC Irvine, http://www.ics.uci.edu/osdpm. “Java Applet based DPM Strategy
Evaluation Website.”
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Using the fact that β0 = 0, t0 = 0, and that α j ≥ 0 and t j ≥ 0, the inequality
holds.

PROOF OF THEOREM 2. Consider a system in which there are only two states:
i − 1 and i. Both online and offline must pay at least αit for an interval of
length t. In addition, each must pay at least βi−1 for the start-up cost. These
costs, which are incurred by both algorithms regardless of their choices, will
only serve to decrease the competitive ratio. In determining, τi, we disregard
these additional costs. Consider the system where the power consumption rate
in the ON state is αi−1 − αi and is 0 in the OFF state. The energy required to
transition from the ON to the OFF state is βi − βi−1. We choose τi to the be the
transition time for the optimal online policy in this system. Thus, we choose τi
to be

arg min
τ

∫ τ

0
π (t)t(αi−1 − αi) dt+

∫ ∞
τ

π (t)[τ (αi−1 − αi)+ (βi − βi−1)] dt.

The online cost for this new system is the above expression evaluated at τ = τi:

ONi =
∫ τi

0
π (t)t(αi−1 − αi) dt+

∫ ∞
τi

π (t)[τi(αi−1 − αi)+ (βi − βi−1)] dt.

Let ti be defined to be (βi−βi−1)/(αi−1−αi). Note that this is the same definition
in the previous proof: the point where the lines αit + βi and αi−1t + βi−1 meet.
The offline cost for the new system is

OFFi =
∫ ti

0
π (t)t(αi−1 − αi) dt+

∫ ∞
ti

π (t)(βi − βi−1) dt.

We are guaranteed that the ratio of the expected online to offline costs is at
most e/(e − 1) [Karlin et al. 1990; Keshav et al. 1995].

Since the ratio of ONi to OFFi is at most e/(e − 1) for each i, we know that
k∑

i=1

ONi

k∑
i=1

OFFi

≤ e
e − 1

.

We now prove that
∑k

i=1 ONi is exactly the expected cost for PLEA on the mul-
tilevel system. We also prove that

∑k
i=1 OFFi is exactly the expected cost of the

optimal algorithm for the multilevel system.
We rephrase ONi by separating the integral into the intervals from τ j−1

to τ j . To simplify notation, τ0 denotes 0 and τk denotes∞.

ONi =
i∑

j=1

∫ τ j

τ j−1

π (t)[t(αi−1 − αi)] dt

+
k+1∑

j=i+1

∫ τ j

τ j−1

π (t)[τi(αi−1 − αi)+ (βi − βi−1)] dt.
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In the sum over all ONi, we group together all the contributions from each ONi
over the interval [τ j , τ j+1] for 1 ≤ j ≤ k + 1. Note that this is the interval that
the algorithm will spend in state j . This value is

j∑
i=1

∫ τ j+1

τ j

π (t)[τi(αi−1 − αi)+ (βi − βi−1)] dt+
k∑

i= j+1

∫ τ j+1

τ j

π (t)[t(αi−1 − αi)] dt. (7)

Thus, we have that
k∑

i=1

ONi =
k∑

j=0

f ( j ),

where

f ( j ) =
j∑

i=1

∫ τ j+1

τ j

π (t)[τi(αi−1 − αi)+ (βi − βi−1)] dt

+
k∑

i= j+1

∫ τ j+1

τ j

π (t)[t(αi−1 − αi)] dt.

Putting the summations inside the integrals and collapsing the telescoping
sums, the expression in (7) becomes∫ τ j+1

τ j

π (t)cost(t) dt,

where

cost(t) = (β j − β0)+ τ1α0 +
j−1∑
l=1

(τl+1 − τl )αl + (t − τl )αl .

Note that

(β j − β0)+ τ1α0 +
j−1∑
l=1

(τl+1 − τl )αl + (t − τl )αl

is exactly the energy expended by PLEA if the idle period t is in the range
[τ j , τ j+1]. Thus, the expected cost for PLEA is

k∑
j=0

∫ τ j+1

τ j

π (t)cost(t) dt =
k∑

i=1

ONi.

The proof that the expected offline cost is equal to
∑k

i=1 OFFi is the same as the
proof for the online cost, except that the integrals are separated into intervals
according to the ti instead of the τi.
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