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ABSTRACT
Out-of-memory errors are a serious source of unreliability in most
embedded systems. Applications run out of main memory because
of the frequent difficulty of estimating the memory requirement
before deployment, either because it depends on input data, or be-
cause certain language features prevent estimation. The typical lack
of disks and virtual memory in embedded systems has two serious
consequences when an out-of-memory error occurs. First, there
is no swap space for the application to grow into, and the system
crashes. Second, since protection from virtual memory is usually
absent, the fact that a segment has exceeded its bounds is not even
detected and hence no pre-crash remedial action is possible.

This work improves system reliability in two ways. First it pro-
poses a low-overhead system of run-time checks by which the out-
of-memory errors are detected just before they will happen, by
using carefully optimized compiler-inserted run-time check code.
Such error detection enables the designer to incorporate system-
specific remedial action, such as transfer to manual control, shut-
ting down of non-critical tasks, or other actions. Second, this work
proposes five related techniques that can grow the stack or heap
segment after it is out of memory, into previously un-utilized space
such as dead variables and space freed by compressed live vari-
ables. These techniques can avoid the out-of-memory error if the
extra space recovered is enough to complete execution.

Results from our benchmarks show that the overheads from the
system of run-time checks for detecting memory overflow are ex-
tremely low: the run-time and code-size overheads are 1.1% and
0.09% on average. When the reuse functionality is included, the
run-time and code-size overheads increase to only 3.2% and 2.33%,
but the method is able to grow the stack or heap beyond its over-
flow by an amount that ranges from 0.7% to 93.5% of the combined
stack and heap size.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors; D.4.5 [Operating
Systems]: Reliability; D.4.2 [Operating Systems]: Storage Man-
agement; C.3 [Special-Purpose And Application-Based Sys-
tems]: Real-time and embedded systems
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1. INTRODUCTION
Out-of-memory errors can be a serious problem in computing,

but to different extents in desktop and embedded systems. In desk-
top systems, virtual memory [15] reduces the ill-effects of running
out of memory in two ways. First, when a workload does run out
of physical main memory (DRAM), virtual memory makes avail-
able additional space on the hard disk called swap space, allowing
the workload to continue making progress. Second, when either
the stack or heap segment of a single application exceeds the space
available to it, hardware-assisted segment-level protection provided
by virtual memory prevents the overflowing segment from over-
writing useful data in other applications. Such protection ensures
than an application with an excessive memory requirement, mani-
fested by an unacceptable level of thrashing, can be terminated by
the user without crashing the system.

Embedded systems, on the other hand, typically do not have hard
disks, and often have no virtual memory support either. This means
that out-of-memory errors leave the system in greater peril [25].
For correct execution, the designer must ensure a rather severe con-
straint – that the total memory footprint of all the applications run-
ning concurrently fits in the available physical memory at all times.
This requires an accurate compile-time estimation of the maximum
memory requirement of each task across all input data sets. There-
after, choosing a physical memory size larger than the maximum
memory requirement of the embedded application guarantees cor-
rect execution. For a concurrent task set, the physical memory must
be larger than the sum of the memory requirements of all tasks that
can be simultaneously live, i.e., running or pre-empted before com-
pletion, at a time.

Unfortunately accurately estimating the maximum memory re-
quirement of an application at compile-time is difficult, increasing
the chance of out-of-memory errors. To see why estimation is diffi-
cult, consider that data in applications is typically sub-divided into
three segments – global, stack and heap data. The global segment
is the only one whose size is easy to estimate, as it is of a fixed size
that is known at compile-time. The stack and heap grow and shrink
at run-time. Let us consider each in turn.

Estimating the stack size at compile-time is difficult for the fol-
lowing reasons. Consider that the stack grows with each procedure
and library call, and shrinks upon returning from them. Given this
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behavior, the maximum memory requirement of the stack can be
accurately estimated by the compiler as the longest path in the call-
graph of the program from main() to any leaf procedure. However
stack size estimation from the call-graph fails for at least the fol-
lowing four cases: (i) recursive functions, which cause the longest
call-graph path to be of unbounded length; (ii) virtual functions
in object-oriented languages, which result in a partially unknown
call-graph; (iii) first-order functions in imperative languages like
C, which also result in a partially unknown call-graph; and (iv)
languages, such as GNU C, which allow stack arrays to be of run-
time-dependent size, causing the procedure stack frame to be of
unknown size at compile-time. In all these cases, estimating the
stack size at compile-time may be impossible.

Paradoxically, the stack may run out of memory even when its
size is predictable. This can happen if the size of the heap is unpre-
dictable, since the stack and the heap typically grow towards each
other. Further, the stack may run out of space, even when both its
stack and heap requirements are predictable. This can happen in
pre-emptive multi-tasking workloads, common in many embedded
systems. In such environments, the stacks of the different tasks
are given fixed amounts of space each, while the heap is allocated
from a free-list shared across tasks. When a task is pre-empted (in-
terrupted) before completion, its stack and heap remain in memory.
Hence, if the stack sizes of all the tasks are predictable, but the heap
size of even one of them is not, the task whose stack abuts the heap,
may run out of space.

Estimating the heap size at compile-time is even more difficult
for the following reason. The heap is typically used for dynamic
data structures such as linked lists, trees and graphs. The sizes of
these data structures are highly data-dependent and thus unknow-
able at compile-time.

Lacking an effective way to estimate the size of the stack and
heap at compile-time, the usual industrial approach is to run the
program on different input data sets and observe the maximum
sizes of stack and heap [7]. Unfortunately, this approach of choos-
ing the size of physical memory never guarantees an upper bound
on memory usage for all data sets, and thus out-of-memory errors
are still possible. Sometimes the memory requirement estimate is
multiplied by a safety factor to reduce the chance of memory er-
rors, but there is still no guarantee of error-free execution. Indeed,
the safety factor used for determining memory size is often limited
since many embedded systems have a low per-unit cost budget.

The possibility of out-of-memory faults takes a toll on the re-
liability of embedded systems. Unlike in desktops where a sys-
tem crash is often no more than an annoyance, in an embedded
system, a crash can lead to loss of functionality of the controlled
system, loss of revenue, industrial accidents, and even loss of life,
depending on the type of embedded system. Moreover, the lack
of virtual-memory-based protection implies that an out-of-memory
error may not even be detected by the embedded system. Without
protection, the system does not check if the stack, for example, has
exceeded the space for it – the only observable effect is incorrect
functionality. Lacking such a check, the embedded system can-
not take corrective action before the crash occurs, such as shutting
down the system safely, sending a message to the operator to take
over manual control of the system to ensure safe operation, or shut-
ting down low-priority processes to free up memory.

The problem of embedded systems lacking hardware protection
and their consequent unreliability has been widely recognized and
lamented by industry practitioners. In [17] the authors argue for
some form of memory protection, and write, ”It’s truly a won-
der that non-memory protected operating systems are still used in
complex embedded systems where reliability, safety, or security are

important.” In [1], the authors write about the desirability of mem-
ory protection in future systems. They write ”Overrun protection
would, for example, allow . . . stack overflows to be trapped to pre-
vent corruption of other tasks’ memory areas. An even more fault-
tolerant system can be envisioned by incorporating . . . (resource
limit reached) thresholds that trigger appropriate recovery actions.”
In [25], in an article appropriately titled ”Programming Without A
Net”, the authors point out that even if an embedded system does
have a sophisticated OS, it still does not have a good solution to
the memory protection problem without hardware support, which
is often unavailable.

This paper proposes a scheme for software-only memory protec-
tion and memory reuse in embedded systems that takes a three-fold
approach to improving system reliability. Each component is de-
scribed in turn below.

Safety run-time checks The first technique proposed to improve
system reliability is to modify the application code in the compiler
to insert software checks for all out-of-memory conditions. Lack-
ing virtual memory, most embedded systems do not check for out-
of-memory conditions; examples include [23, 16, 11, 32]. With
such checks, the embedded system can take corrective action when
it runs out of memory. One can imagine industrial and transporta-
tion scenarios where warning the operator to assume manual con-
trol can prevent deadly and expensive accidents. In industrial con-
trol systems, shutting down the system can also prevent accidents.

In a naive implementation, checking for stack or heap overflow
requires a run-time check for overflow at each procedure call and
each malloc() call in the program. We describe the rolling-checks
optimization that is able to selectively eliminate many of these
checks while retaining the guarantee of always detecting overflow.

This system of safety run-time checks is a stand-alone method
that can be implemented by itself. The remaining techniques below
for reusing dead space and compressing live data are optional, and
can be implemented if the designer wants to use previously un-
usable memory, at the cost of some implementation complexity.
The reuse and compression methods below augment the safety run-
time scheme to reuse memory when a segment overflows.

Reusing dead space Our second technique aims to reduce the ap-
plication’s memory footprint by allowing segments (stack or heap)
that run out of memory to grow into non-contiguous free space in
the system, when available. Two cases are explored: (i) when the
overflowing stack and heap are allowed to grow into dead global
variables, especially arrays; and (ii) when the stack is allowed to
grow into free holes in the heap segment. By using previously un-
utilized space, the out-of-memory error is postponed and may be
avoided if this extra space is enough to complete execution.

Figure 1 illustrates how the overflowing stack or heap grows into
various sources of free space in the system. Figure 1(a) shows the
memory layout during normal operation, when no segment is out
of memory. Figure 1(b) shows the overflowing stack growing into
the space for the dead global variable G2. Figure 1(c) shows the
overflowing heap growing into the space for the same dead global.
Figure 1(d) depicts the overflowing stack growing into free holes in
the heap. Figures 1(e) and (f) are discussed later.

Growing the stack and heap into non-contiguous space is im-
plemented in three steps. First, at compile-time, liveness analysis
detects dead global variables at each point in the code as possi-
ble candidates for growing into. This liveness information is then
stored in run-time data structures. To reduce the size of the data
structures, liveness information is stored per region, instead of per
instruction, where regions are defined in section 4. Dead variables
that may become live in a later region may also be used for grow-
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Figure 1: Memory layouts for our schemes. (a) Normal operation; (b) Overflow stack in dead global G2; (c) Overflow heap in dead global G2; (d)
Overflow stack in free hole in heap; (e) Overflow stack in compressed live global G2; (f) Overflow heap in compressed live global G2.

ing overflowing segments, provided the compiler can guarantee that
the overflow space will be freed before the dead variable becomes
live. Second, if the run-time checks described earlier reveal that
the stack or heap is out of memory, then special code is executed to
grow the overflowing segment non-contiguously into unused space.
The unused space can be dead globals for growing the stack or
heap, or free holes in the heap for growing the stack.

The common case overheads of the reuse and compression
schemes are reduced by the new region-merging optimization de-
scribed later, and by the rolling-checks optimization inherited from
the safety checks. Results shows that the overheads with optimiza-
tion are low.

Compressing live data Our third and final technique for improv-
ing reliability compresses live data and uses the resulting freed
space to grow the stack or heap when it overflows. The compressed
data is later de-compressed before it is accessed. Live data is com-
pressed only after all available dead space is used up for overflow
by our reuse technique described above. Currently we investigate
compressing globals for growing the stack and the heap.

Figures 1(e) and (f) illustrate how the overflowing stack or heap
grows into space freed by compressing live global variables. Fig-
ure 1(e) shows the overflowing stack growing into the space freed
by compressing the dead global variable G2. Figure 1(f) shows the
heap growing into the same space.

Let us consider the correctness requirements and performance
of our compression scheme. For correctness, the data placed in
space freed up by compression must itself be provably dead before
the compressed global is accessed again, so that the global can be
de-compressed in-place. In-place de-compression ensures that the
global is never moved – moving data can complicate its address-
ing, and can cause incoming pointers to it to become invalid, and
so is avoided. For good performance, the global chosen for com-
pression should be one that will not be used for a long time, so that
compression and de-compression are infrequent. To be sure, com-
pression and de-compression can be expensive at run-time, but the
overheads are incurred only if the system runs out of memory. At
that point, any overhead is often acceptable if the alternative is a
system crash!

Discussion Let us examine whether our schemes can be used in
real-time systems. Since the overhead of the safety run-time checks
is compile-time-predictable and small, they are easily adapted to

any real-time environment. The same is true for our reuse and
compression schemes in the common case (i.e., before the system
would have run out of memory on a conventional system). The
only problematic case is when the reuse or compression schemes
are used, and the system has run out of memory, i.e., is using re-
claimed space. Here the overheads are less predictable, so hard
real-time guarantees are difficult to provide. Soft real-time guar-
antees are still possible though. In the vast majority of systems, a
slow response is better than no response.

At first glance, it appears that a counter argument to our scheme
is that simply increasing the amount of physical memory in the
system can improve reliability by the same amount as our method
does. Although it is true that increasing the amount of memory
improves reliability, there are three justifications for our method.
First, reliability at any given system cost is improved. Because of
the earlier-described difficulties in estimating the memory require-
ment of an application set, a 100% guarantee of adequate memory
is still not possible. By delaying or avoiding the out-of-memory
condition, the reliability for any given memory size is significantly
improved. A second justification for our method is that some-
times when reusing dead space, our method can provably reduce
the memory requirement of the system, which can reduce the size
of physical memory needed, and thus its cost. Third, the presence
of run-time checks for out-of-memory conditions is a new feature
that cannot be substituted by increasing the physical memory size.

Our method has been implemented in a GCC-based compiler
for the Motorola MCore [24] processor. Results are collected on a
cycle-accurate MCore simulator. For our benchmarks, the run-time
and code-size overheads of our scheme of safety run-time checks
are measured at 1.1% and 0.09% respectively. Quantitative results,
of course, cannot evaluate the benefit of remedial action that our
out-of-memory checks allow, which can be invaluable.

We also measure the benefits of the reuse and compression
schemes. Results show that 0.7% to 93.5% of the combined stack
and heap size can be grown non-contiguously into previously un-
utilized space, such as space for dead globals, or space freed by
compressing live globals. The results do not measure the reduc-
tion in the total memory footprint since the primary goal of the
method is not to reduce the amount of physical memory. Instead
the results measure the reduction in the footprint of the growing
segments, which is a more direct measure of reliability. The over-
head is higher when reuse or compression is used, but is still low in
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the common case when the system is not out of memory – 3.2% in
run-time and 2.33% in code-size.

The rest of the paper is organized as follows. Section 2 presents
related work. Section 3 describes our scheme for run-time checks
for memory overflow protection. Sections 4 and 5 describe our
schemes for growing the stack and heap, respectively, into dead
global variables. Section 6 describes how to grow the stack into free
holes in the heap. Sections 7 and 8 describes how to grow the stack
and heap, respectively, into space freed by compressing live global
variables. Section 9 explores the choice of data compression algo-
rithm. Section 10 discusses the space requirement of running our
overhead routines. Section 11 describes issues in liveness analysis.
Section 12 describes experimental results. Section 13 concludes.

2. RELATED WORK
In a few high-end embedded systems, a limited form of virtual

memory is available [27, 22] that provides memory protection but
not swap-space. Unlike virtual memory for desktop systems that
gives programmers the illusion of an unlimited amount of available
memory, all embedded systems, with or without virtual memory,
are inherently constrained by the size of the physical memory [25]
because of the typical lack of hard-disks and hence of swap space.
As a consequence, even programs running on embedded systems
that have memory management hardware and virtual memory, can
run out of space. Hence, our techniques for recovering space from
the limited amount of memory available, are also valuable for such
programs. The added benefit of run-time checks discussed earlier,
however, is not applicable to these systems.

On the other hand, most commercial embedded processors, such
as [23, 16, 11, 32, 3], do not have virtual memory of any kind.
This is because the cost of the hardware memory management units
(MMUs) that provide virtual memory has been considered by pro-
cessor vendors to be excessive in an embedded environment [12].
It is easy to see why: MMUs must contain segment or page tables
and their associated logic, which are expensive in area, run-time
and power. In such processors, all our techniques proposed are
valuable since they provide memory protection in software at low
cost and also some ability to reclaim dead space in the case of an
overflow.

We are not aware of any method that uses software run-time
checks for out-of-memory errors, or that reuses space in another
segment when one segment is full.

Similar run-time checks to ours have been proposed in [5],
though in a completely different context, and with a different goal.
The run-time checks in [5] are used to implement a stack man-
agement scheme that allows high-concurrency desktop servers to
support threads without allocating a large contiguous portion of the
virtual memory for their stacks. Instead a thread’s stack is allo-
cated in a small fixed-size heap chunk, and is grown discontinu-
ously into other heap chunks when one is full. Our system differs
from theirs in the following seven ways. First, our system is ap-
plied, optimized and evaluated for embedded systems and for a dif-
ferent goal of detecting out-of-memory errors. Second, our method
works with any existing stack layout, while their method requires
a change in the stack layout to treat it more like the heap, in that
it consists of un-ordered fixed-size chunks that are dynamically al-
located. Third, our scheme does not incur the extra overhead of
discontinuous stack growth unless the system is out of memory,
which is rare, while their scheme would incur that overhead when-
ever the small fixed-size chunks run out, which is more common.
Fourth, our run-time checks consider heap growth in deciding if
the stack is running out of memory. This is not needed when us-
ing fixed-size heap chunks for stack, but is needed when the stack

PER-PROCEDURE SAFETY CHECK CODE
1. if (Stack-Ptr < ORIGINAL BOUND) { /* Stack Overflow */
2. call routine to handle out-of-memory condition
3. }

Figure 2: Pseudo-code for safety run-time checks.

and heap can grow into each other, as is possible in the general
case. Fifth, our scheme can handle virtual function calls, essential
to handle object-oriented languages, while their scheme does not
apply to such languages. Sixth, our reuse scheme can reclaim the
space in dead global variables, which is not their goal. Seventh, our
evaluation measures the impact on code-size which is important for
embedded systems, while they do not, given their focus on desktop
servers.

A different approach to increasing the amount of space avail-
able to a program is garbage collection [4, 6], whose primary
goal is to reclaim unreachable heap objects. Recently, traditional
garbage collection techniques have been adapted to embedded en-
vironments [18, 8, 21]. Of our five techniques, however, four at-
tempt to recover space from the global segment, which is not ad-
dressed by garbage collection. A further distinguishing feature of
our work is that we provide run-time checks for reliability which
is not a feature of garbage collection. In essence, garbage collec-
tion also reduces the memory footprint of a program, but by using
a different approach, and hence is complementary to our scheme.

Compression of program data [35] has been discussed in the con-
text of heap structures to reduce the memory footprint and hence
the cost of embedded systems. The overall goal of our technique,
on the other hand, is increasing the reliability of the system by
smoothly transitioning to a reuse mode in case of a memory short-
age. Other techniques such as compression and compaction of em-
bedded code [31, 19, 14] (not data), reduce the amount of ROM
required and these schemes, as such, are orthogonal to ours.

3. SAFETY RUN-TIME CHECKS FOR
OVERFLOW PROTECTION

This section describes our light-weight, software-only scheme
for detecting out-of-memory errors. To see how out-of-memory
errors can be detected, consider that the stack grows only at proce-
dure calls, and the heap grows only in dynamic memory allocation
routines such as malloc(). It follows that a baseline un-optimized
scheme involves simply inserting a run-time check for overflow at
each procedure call and each malloc() call. In the rest of the paper,
malloc() is used as shorthand for any dynamic memory allocation
routine.

The safety run-time checks are implemented as follows. First,
for heap checks, if the malloc() finds that no free chunks of ade-
quate size are available then an out-of-memory error is reported.
Such a check is nothing new since it exists by default in most ver-
sions of malloc(), and thus it adds no overhead. Second, consider
the stack checks which are inserted at each procedure call. These
are new and add run-time overhead. They work as follows. The
compiler inserts code at the entry into each function, which com-
pares the values of the new, updated stack pointer and the current
allowable boundary for the stack. Without loss of generality, if the
stack grows into lower addresses, then if the new stack pointer is
less than the stack’s allowable boundary, an out-of-memory error
is flagged and handled safely. The boundary for the stack could be
either (i) the heap pointer, if the heap adjoins the growing direction
of the stack; or (ii) the base of the adjoining stack, if another task’s
stack adjoins the growing direction of stack; or (iii) the end of mem-
ory, if the stack ends at the end of memory. Which of these three
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void do rolling optimization() {
1. Sort all procedures in decreasing order of number

of calls to each procedure in the profile data
2. for (each procedure Curr Proc in sorted list)
3. can roll to all parents← true
4. for (each parent P of Curr Proc)
5. if (!can roll(Curr Proc, P, Curr Proc))
6. {can roll to all parents← false; break}
7. if (can roll to all parents)
8. for (each parent P of Curr Proc)
9. roll check(Curr Proc, P)
10. return

boolean can roll(Curr Proc, Ancestor, Ancestor Child) {
11. if (call to Curr Proc is virtual function call)
12. return (false)
13. if (there is any heap allocation in Ancestor before calling

Ancestor Child for the LAST time in Ancestor)
14. return (false)
15. if (either Curr Proc or Ancestor recursive but not both in same cycle))
16. return (false)
17. if (Curr Proc == Ancestor)
18. return (false) /* Termination for recursive cycles */
19. Longest path← Path in call graph from Ancestor to

Child, not including Child, with largest sum of
stack frame sizes among all such paths

20. Sum stack size← Sum of stack sizes along Longest path
21. if (Sum stack size > 10% of max. stack + heap size in profile)
22. return (false)
23. if (Rolled size [Ancestor] == 0) /* No check on Ancestor */
24. for (each parent P of Ancestor in the call-graph)
25. if (!can roll (Curr Proc, P, Ancestor))
26. return (false)
27. return (true) /* Can roll check from Curr Proc to Ancestor */

void roll check (Curr Proc, Ancestor) {
28. if (Curr Proc == Ancestor)
29. return (false) /* Termination for recursive cycles */
30. if (Rolled size [Ancestor] == 0)
31. for (each parent P of Ancestor in the call-graph)
32. roll check (Curr Proc, P)
33. else { /* Can roll check from Curr Proc into Ancestor */
34. Longest path← Path in call graph from Ancestor to

Child, not including Child, with largest sum of
stack frame sizes among all such paths

35. Sum stack size← Sum of stack sizes along Longest path
36. Rolled size [Ancestor]← max (Rolled size [Ancestor],

Sum stack size + Rolled size [Curr Proc])
37. Rolled size [Curr Proc]← 0
38. }
39. return

Figure 3: Pseudo-code for rolling checks optimization

cases to use is known at compile-time and thus the compiler uses
the correct boundary in the compiled code. Figure 2 shows what
the safety run-time check code looks like for the stack checks; the
heap checks are not shown.

The above scheme is un-optimized, but we can reduce the over-
heads of the added stack checks by the rolling checks optimization.
The intuition behind the optimization can be understood by the fol-
lowing example. If a parent procedure calls a child procedure, then
instead of checking for stack space at the start of both procedures,
it might be, in certain cases, enough to check once at the start of
the parent that there is enough space for the stack frames of both
parent and child procedures together. In this way, the check for
the child is ‘rolled’ into the check for the parent, eliminating the
overhead for the child. If the child is called more frequently than
the parent, the reduction in overhead can be more than half. Thus,
given a choice, it is more important to roll checks out of frequently
called child procedures than out of less frequent procedures.

There are several issues that complicate the above simple pic-
ture of the rolling checks optimization, which must be taken into
account. First, a child procedure’s check cannot be rolled into its
parent if heap data is allocated inside the parent before the child
procedure is called. This is because when the parent is called, it is
impossible to guarantee enough space for the child since the heap
could have grown in the meantime cutting into the space available
for the child. Thus the rolling optimization is not done in this case.
Second, in object-oriented languages if the call to the child from
the parent is an unresolved virtual function call, then the child’s
check cannot be rolled to the parent since the exact identity of the
child is unknown at compile-time. Third, since a call-graph rep-
resents potential calls and not actual calls, it is possible that for a
certain data set a parent may not call a child procedure at all. In
that case, rolling the child’s check to the parent may declare the
program to be out of memory when in reality it would not have
been. To avoid this effect from becoming too pronounced, we limit
the rolling checks optimization such that the rolled stack frame size
does not exceed 10% of the maximum observed stack + heap size
in the profile data. This guarantees that a premature out-of-memory
declaration can happen only when the space remaining is less than
10% of the maximum stack + heap requirement. Fourth, rolling
checks can be permitted inside of recursive cycles in the application
program, but not out of recursive cycles since every time a parent

procedure is called, its child procedure can be called multiple times
if it is recursive.

Figure 3 shows the complete pseudo-code for the rolling checks
optimization, taking into account the issues mentioned above. Too
involved to describe in detail, we briefly outline the pseudo-code
here. Routine do rolling optimization() is the highest-level rou-
tine for the optimization. It considers rolling checks in the order
of their frequency. In order to roll a check, it first ensures that
the check can be legally rolled to all its parents (lines 3-6), be-
fore it actually rolls the checks to its parents (lines 7-9). Routine
can roll(), shown next, is a recursive routine that checks if the cur-
rent procedure can be rolled in to the Ancestor (both arguments to
can roll()). It handles the exceptions mentioned earlier that pre-
vent rolling for virtual functions (line 11-12), heap allocations (line
13-14) and pre-mature declarations (lines 19-22). It also handles
recursive functions in the application as outlined earlier (lines 15-
18). Finally lines 23-26 check if the parent already had its check
rolled; if so, the child recursively checks (line 25) whether it can
roll its check to the parent’s parents (i.e., its grandparents).

Routine roll check() takes a similar recursive approach of
rolling the checks from the current procedure up to its ancestors
(lines 30-32). It does not need to check rolling-preventing excep-
tions, as those have been checked already in can roll(). The pri-
mary termination condition of the recursion is when the parent has
a check on it, and hence the rolling can be done to it (line 33-
38). The Rolled size variable for each procedure initially stores
the size of the frame for that procedure. When a check is rolled,
the Rolled size is set to zero for the child, and to the sum of the
parent and child frame sizes for the parent. Care is taken that if a
parent has multiple children, then the Rolled size is set to be the
maximum needed across all its children (line 36).

The rolling checks optimization is effective in eliminating much
of the overhead of the safety run-time checks. More details are in
the results section.

4. REUSING GLOBALS FOR STACK
Our scheme of reusing globals for stack allows the program’s

stack to grow into the global segment when it is detected that the
system is running out of stack space. This is implemented by the
following two tasks. First, the compiler performs liveness analysis
to detect dead global arrays, if any, at each point in the program.
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main () {
proc-A()
proc-B()
while (. . . ){X =. . .} /* Loop 1 */

}

proc-A () {
proc-C()

}

proc-B () {
proc-C()
for (. . . ){Y =. . .} /* Loop 2 */

}

proc-C () { . . .}

main()

X

4,8

1

11 13

14

3,7

652 12

109

Y

proc_B()

proc_C()

Loop 1

Loop 2

proc_A()

(a) (b)
Figure 4: Example showing (a) a program outline; and (b) is its DPRG showing nodes, edges & timestamps.

Second, in case the safety run-time checks described in section 3
find that the stack is out of memory, our scheme selects one of the
global arrays that is dead at that point, and grows the stack into it.

Identifying dead globals Depending on where in the program’s
execution the stack ran out of space, a different global array is cho-
sen to grow the stack into. The method of choosing the global to
grow into has the following three steps. First, the compiler divides
the program up into several regions, and for each region, builds
a list (called Reuse Candidate List) of global arrays that are dead
throughout that region and also dead in all functions that are called
directly or indirectly from that region1. This deadness constraint
ensures that none of the functions pushed on to the global variable
portion of the stack access the global array, and thus the global ar-
ray remains dead during the life of those stack functions, allowing
reuse. Second, the Reuse Candidate List is sorted at compile-time
in decreasing order of size to give preference to large arrays for
reuse. Third, at run-time, when the program is out of memory it
looks up the Reuse Candidate List for that region and selects the
global variable at the head of the list to extend the stack into. Since
the list is sorted at compile-time in decreasing order of size, this
chooses the largest dead global to grow into. An implementation
detail is that for the program to look up the list for the current re-
gion, it must know what the current region is. Thus the compiler
inserts a current- region variable into the program which is assigned
a new value each time a new region is entered. This new per-region
reuse code is shown in figure 5(i).

A good choice of regions should satisfy the following three cri-
teria. First, the regions should be short enough to be able to closely
track the Reuse Candidate List preferences of different program
points. Second, the regions should be long enough that the run-time
overhead due to code inserted at the start of every region remains
a small fraction of the total run-time. Third, it is desirable if the
regions can be numbered at compile-time in the order of their run-
time execution. Such a static run-time ordering does not help in
this section, but will help later in section 5 while growing the heap
into dead global variables.

The following heuristic choice of regions satisfies all the above
criteria: every static loop beginning and end, and function begin-
ning and end, marks the entry into a new region. Each region con-
tinues until the start of the next region in run-time order. Figure 4(b)
illustrates the choice of regions for the code in figure 4(a). The fig-
ure shows the start of the regions numbered with timestamps 1 to
14. The timestamp to the left of a node depicts its beginning, and
the timestamp to its right depicts its end. Timestamps depict the
run-time order of those points in a compile-time data structure.

1Such liveness analysis is possible even for situations where the
call-graph is not fully known. See section 11 for details.

More formally, figure 4(b) is the Data-Program Relationship
Graph (DPRG) for the code in figure 4(a). The DPRG is a com-
piler data structure that was first proposed in [33], which we adopt
in our work. It consists of the call-graph of the program appended
with nodes for loops and variables connected in the obvious man-
ner depicted in the figure. The timestamps (1-14) are obtained by a
depth-first search (DFS) of the DPRG, which numbers each region
in the order in which they are visited during traversal. Interestingly,
the timestamp order is the run-time order of the regions. Recursion
is handled by collapsing recursive cycles in the DPRG into a single
node before DFS; such a node is therefore assigned a single times-
tamp during DFS. The collapsed node is thus a single region, and is
handled as any other. More details on the properties of the DPRG
are available to the interested reader in [33], but are not essential to
the understanding of this paper.

Region-merging optimization One optimization we perform to
reduce the overhead of regions is to merge regions whenever pos-
sible. In particular, if two regions that are executed consecutively
at run-time are such that they have the exact same Reuse Candidate
Lists, they are merged into a single region. This process is repeated
until the minimal set of regions, each with a distinct Reuse Can-
didate List, is obtained. This ensures that the overhead from code
inserted at the entry into regions is minimized, without sacrificing
the best choice of the Reuse Candidate List per region.

Growing stack into globals Once the out-of-stack condition is
detected by the safety run-time checks, growing the stack discon-
tinuously into the dead global array is done by changing the stack
pointer to the end address of the array. Further calls occur as usual,
and procedure returns need no modification since the return address
is recovered from the current procedure’s stack frame. The return
address, when recovered from the stack frame, is correct since the
stack pointer is updated to reflect the address of the global array
only after the original stack pointer value has been saved in the
current procedure’s frame.

Growing the stack into globals is implemented by augmenting
the safety check code, which detects the overflow, with code that
performs the reuse for that region. Figure 5(ii) shows the aug-
mented code. To understand the code, consider that a new global
boolean variable called Reuse-Started, initialized to false, is in-
serted in the code by the compiler. The first time the stack over-
flows (first part of line 1), Reuse-Started is set to true(line 3), and
the stack pointer is changed to the end address of the first element
on that region’s Reuse-Candidate-List (lines 4-5), which achieves
the discontinuous growth. Otherwise, if Reuse-Started is true, i.e.,
the stack is currently in overflow mode, (lines 8-17), the stack over-
flow check is repeated with the new boundary of the global array
(line 8), since the original check on line 1 is no longer correct. If the
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PER-REGION REUSE CODE
1. Current-Region← CURRENT REGION CONSTANT ID (i)

SAFETY CODE AUGMENTED WITH REUSE CODE FOR THAT REGION
1. if ((Stack-Ptr < ORIGINAL BOUND + Space needed by reuse routines) OR (Reuse-Started)) {
2. if (!Reuse-Started) {
3. Reuse-Started← 1
4. Current-candidate← Head of Reuse-Candidate-List[Current-Region]
5. Stack-Ptr← Current-candidate→base-address + Current-candidate→size
6. }
7. else {
8. if (Stack-Ptr < Current-candidate→base-address + Space needed by reuse routines) { /* Stack Overflow */
9. Current-candidate← Next element of Reuse-Candidate-List[Current Region]
10. Stack-Ptr← Current-candidate→base-address + Current-candidate→size
11. }
12. if (Stack-Ptr > (Current-candidate→base-address + Current-candidate→size)) { /* Stack Underflow */
13. if (Current-candidate == Head of Reuse-Candidate-List[Current Region]) {
14. Reuse-Started← 0
15. else
16. Current-candidate← Previous element of Reuse-Candidate-List[Current Region]
17. }
18. }
19. }

(ii)

Figure 5: Pseudo-code for inserted safety run-time checks augmented for reuse.

stack has overflowed this global array, it is discontinuously moved
to grow into the next global array in the Reuse-Candidate-List of
that region (lines 9-10). If there is no next element on line 9, (code
not shown), we are out of memory.

Lines 12-17 handle the case when the array had overflown, but
has now retreated to the original space. If the retreat is from the first
global array in the Reuse-Candidate-List (line 13), then we go back
to the original stack space and reset Reuse-started to false (line 14),
otherwise we go back to the previous global array.

The overheads for reuse are larger than those for safety checks
alone in three ways. First, figure 5(i) shows that the run-time over-
head for the start of regions without a safety check is one scalar
assignment. Second, figure 5(ii) shows that the safety check is aug-
mented so that in the common case when the system is not out of
memory, the additional run-time overhead is that the if condition
on line 1 has an extra OR with a boolean variable Reuse-Started.
The body of the if (line 2-18) is not executed in the common case.
Third, the code-size overhead from figure 5(ii) is modest since the
entire body of the if statement (line 2-18) is moved to a procedure
that is called repeatedly from each modified safety check instance
in the program. The results section shows that the overheads with
reuse remain small.

5. REUSING GLOBALS FOR HEAP
This section describes how our scheme of reusing globals for

stack, described in section 4, is extended to allow reuse of global
variables for heap data as well. This is achieved by adding the
dead global arrays to the heap free-list when the heap is full. The
extended scheme leverages the framework built earlier, which in-
cludes dividing the program into regions, adding a variable to keep
track of the current region, performing liveness analysis to detect
dead global arrays and building Reuse Candidate Lists per region.

Growing the heap into dead globals entails implementing the fol-
lowing three additional tasks beyond the ones for growing the stack.
First, the Reuse Candidate Lists are sorted at compile-time by next-
time-of-access and size, rather than by size alone, such that the dead
global array that comes alive farthest into the future is placed at the
head of the list. The size is used as a tie-breaker: if there are two ar-
rays that come alive at the same time, the larger is placed earlier in
the list. Second, the malloc() library function is modified to make
a call to a special Out-of-Heap Function when there is no available
free chunk to satisfy the allocation request. Third, the compiler in-
serts the Out-of-Heap Function in the code; it selects the candidate

at the head of the current region’s Reuse Candidate List, and adds
it to the heap free-list. The code for these three tasks is not shown,
but each is elaborated upon below.

Sorting Reuse Candidate Lists To see why the individual Reuse
Candidate Lists need to be resorted on the basis of next-time-of-
access of the dead global arrays, consider the difference between
growing the stack into dead globals versus growing the heap. The
difference arises because stack frames have predictable lifetimes
and are automatically popped off the stack once the corresponding
functions exit. Thus it is easy to guarantee that the extended stack
will be popped off by the time the dead global becomes live again.
In contrast, liveness analysis for heaps is difficult. Even if heap
objects are freed, it is difficult to prove that all objects allocated at
a site, and not just some, have been freed. Consequently, there is
no guarantee that the extended heap structure will be dead by the
time the global array that it was growing into becomes live again.

Given the difficulty in liveness analysis for heaps, in case the
dead global occupied by the extended heap becomes live, our
scheme does a run-time check to see if the extended heap has been
freed, immediately prior to the the global coming back to life. If
the extended heap is empty then the program runs successfully. If
the extended heap is not empty, then we declare that we are out-
of-memory. In this last case, the out-of-memory condition is post-
poned but our method fails to prevent it. Finally, if there is a dead
global that remains dead for the remaining lifespan of the program,
then that variable is selected to grow the heap, and no further run-
time check is needed to guarantee correctness.

We can now see why the dead globals in the Reuse Candidate
Lists are sorted in decreasing order of next-time-of-access. The
later the global variable comes back to life, the greater is the prob-
ability that the run-time check, discussed above, would succeed.
Thus the chance of success increases, if globals that come alive
later, are chosen first, to grow into.

The next-time-of-access of the dead global variable is estimated
at compile-time using the DPRG timestamps described in section 4
as follows. Initially, for the current region, the set of later regions
is computed as the union of two sets: (i) all regions with a greater
timestamp than the current region, and (ii) all regions that are de-
scended from the loop node L closest to main() on the DPRG path
from main() to the current region. A node is descended from L if
there exists a path from main() to the node through L. If there are
no loop nodes on the path then this latter set is empty. Using these
two sets, the next timestamp of access of the global variable is com-
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puted as the next timestamp in the common case ordering of the set
of later regions, keeping in mind that the common-case ordering of
nodes descended from loops follows the loop’s backward branch.

Modifying malloc The second task needed for growing the heap
into dead globals is to modify the malloc() library function (or other
dynamic memory allocation routines). Malloc() is modified such
that, instead of returning -1, when it is unable to find any chunk
on the free-list capable of satisfying the current allocation request,
it makes a call to the Out-of-Heap Function, which is described
in detail in the next paragraph. This task simply involves replac-
ing the return statement in malloc() with a call to the Out-of-Heap
Function, and since this call is executed only when the program has
actually run out of heap space, there is no overhead in the common
case of when the program is not out of memory.

Out-of-Heap Function The Out-of-Heap function is called from
malloc() when it is out of heap space and does the following three
tasks. First, it looks up the Reuse Candidate List corresponding
to the current region and selects the dead global array at the head
of the list. Second, it creates a malloc() chunk header at the start
address of the selected global array so as to make it look like a
usual heap chunk obtained by calling malloc(). The malloc() chunk
header is standard in most language implementations – it includes
information on the size of the chunk and whether the chunk is cur-
rently in use. Third, the Out-of-Heap function calls the free library
function with a pointer to this global array, which places this chunk
in the appropriate heap free-list bin, based on its size.

Two advantages of the extended scheme described above, are
as follows. First, it is based on the same framework as the origi-
nal scheme of reusing globals for stack, and requires no additional
data-structures. Second, it has no extra run-time overhead in the
common case, as explained earlier.

6. REUSING HEAP FOR STACK
When the program is out of stack space, another possibility is

to grow the stack into free holes inside the heap, if available. Im-
plementation is done by inserting additional code (not shown) in
the existing check for whether the stack is out-of-memory in fig-
ure 5(ii). When the stack is out-of-memory, the code first tries to
grow the stack into dead globals as described earlier; only after
those are full is the stack grown into free holes in the heap. To
grow into the heap, a special malloc() call is made to allocate a
chunk in the heap among its free holes, and thereafter the stack is
grown into the returned chunk. The special malloc() call returns the
free hole of the largest available size, or of the compiler-estimated
size of the remaining stack, if known, whichever is smaller. The
free hole of the largest size is readily available in most widely used
malloc() variants, which usually store the holes in lists of increas-
ing power-of-two hole sizes [20].

This method of growing into free holes in the heap is unneces-
sary when these holes are periodically eliminated using heap com-
paction. Heap compaction is usually possible only in systems that
do garbage collection. Garbage collection is usually not done in
imperative languages such as C and our technique of reusing heap
for stack is useful in such environments. In systems that do heap
compaction, however, the reusing heap for stack component of our
technique is not useful and should be turned off.

7. COMPRESSING GLOBALS FOR STACK
When the program is out of stack or heap, it is possible to free up

even more space by compressing live global variables, and growing
the stack or heap into the resulting free space. Live data is com-
pressed only after all available dead space is used up for overflow

by our reuse technique described above. The compressed data is
later de-compressed before it is accessed. For good performance,
the global chosen for compression should be one that will not be
used for a long time, so that compression and de-compression are
infrequent. The choice of the actual data compression algorithm to
use is explored later in section 9.

This section describes how the freed up space from compression
can be used to grow the stack. The scheme is similar to the method
described in section 4 for growing the stack into dead globals. In
particular, it uses the same set of regions, the same method to detect
the Out-of-Stack condition and the same mechanics for growing the
stack discontinuously into the global segment.

The implementation of this scheme differs from the scheme for
growing the stack into dead globals in the following three ways.
First, the reuse candidates are extended to include live global ar-
rays. Second, at run-time, when the stack is about to grow into a
particular candidate in the global segment, if the candidate chosen
is live at that point, it is compressed and saved so that it can be re-
stored when the array is accessed later. Third, the code inserted by
the compiler at the start of every region is augmented to ensure that
if reuse has started, then all compressed global arrays accessed in
the following region are de-compressed in their original locations.
The rest of the section describes these three modifications in detail.

Extending the Reuse Candidate Lists In order to have more
reuse candidates per region, we extend the definition of a reuse can-
didate - a global array is a reuse candidate for a region if the array
is not accessed throughout that region, and is not accessed in any
of the functions called directly or indirectly from that region. This
condition of no-access is a relaxation of the earlier-mentioned con-
dition for growing into dead globals, where the requirement was
that the variable is dead in the same regions. Satisfying this no-
access constraint guarantees that when the overflow stack is live,
the compressed global is not accessed. Conversely, when the com-
pressed global is accessed again, it can be de-compressed in-place
since the portion of stack that had overflowed is guaranteed to
be popped off by then. In-place de-compression ensures that the
global is never moved – moving data can complicate its address-
ing, and can cause incoming pointers to it to become invalid, and
so is avoided. In implementing this constraint, finding the vari-
ables accessed in a certain region is possible even in the presence
of pointers by using a pointer analysis [30, 9] scheme to find the
list of all variables a pointer-based reference could access.

Triggering compression Once the reuse candidates per region
have been determined, the process of compression is triggered
when needed. To implement this, the reuse candidate lists are
sorted as before, but an extra field is added to each candidate to
indicate whether it is dead or live. In addition, the code inserted for
when the stack is out of memory, shown in figure 5(ii), is extended
as follows (modifications not shown). First, it selects the candidate
at the head of the current region’s Reuse Candidate List and checks
whether it is dead or alive. Second, in case it is dead, it simply
extends the stack into it. Third, in case it is alive, it calls a com-
pression routine that compresses the global array in-place, makes
an entry in a Compression Table storing the start address and com-
pressed size of the array, and moves the end address of the global
array into the stack pointer register. Finally, after compression, the
stack pointer is checked against the end address of the compressed
array, rather than its base address (line 8).

Triggering de-compression In order to trigger de-compression
when needed, the compiler augments the code at the start of ev-
ery region. Figure 6 shows this additional code which is added to
the codes in both figures 5(i) and (ii). It ensures that if reuse has
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ADDITIONAL PER-REGION CODE WITH COMPRESSION
1. if (Reuse-Started) {
2. for (each global array GA used in region CURRENT REGION CONSTANT ID and that is currently compressed)
3. De-compress GA in its original location
4. }

Figure 6: Extra pseudo-code for compression added to figures 5(i) and (ii).

started, then all compressed global arrays accessed in the follow-
ing region are de-compressed in their original locations (line 3).
To find which arrays are compressed, it looks up each global array
(code not shown) in the Compression Table mentioned above. If
there is no entry corresponding to that array, it implies that the ar-
ray is not compressed and can safely be accessed in this region. If
a matching entry is found, the start address and compressed size of
the array are looked up from the Compression Table, and the array
is de-compressed in-place. In the case of figure 5(ii) the added code
does not increase the common case overhead since it can be placed
inside the body of the else part on line 7. The code is added only
when the compression is employed for an application.

The above scheme of compressing live global arrays and reusing
the space for stack creates many more opportunities to reuse space.
Moreover, the additional common case overhead of this scheme
is negligible when compared to the basic scheme, both of which
are low. The overhead when compression is done is high, but is
incurred only when the system would have otherwise crashed. At
that point, anyone would prefer a slow system to a crashed system.

8. COMPRESSING GLOBALS FOR HEAP
The final scheme we present is to grow the heap, when it is out-

of-memory, into the space freed by compressing live global vari-
ables. It is implemented by combining parts of two earlier schemes:
the method to grow the heap into dead globals in section 5, and
the method to grow the stack into compressed live globals in sec-
tion 7. It has the following three components. First, it uses the
same Reuse Candidate Lists as section 7, that are sorted accord-
ing to the next-time-of-access of the global arrays, as described in
section 5. Second, once the system has run out of heap space, it
makes a call to the Out-of-Heap Function, discussed in section 5,
which is now slightly modified to support compression. The mod-
ification involves selecting the candidate at the head of the current
region’s Reuse Candidate List, and instead of directly calling a free
on that array, first checking to see if the candidate is live. If that
is indeed the case, it first compresses the global array in place, ex-
actly the way it was described in section 7, including maintaining
book-keeping information in the Compression Table, and finally,
makes a call to the free library function with a pointer to the space
freed up by compression. Third, before every region a check is
made to see if reuse has started, just as in section 7. If it has, all
compressed globals are de-compressed as in that section. The only
additional task needed before de-compression is that the overflow
heap is checked to see if it is empty, like in section 5, and if it is
not, an out-of-memory error is declared.

Since this scheme is a combination of existing technologies, it
does not use any new data structures and has the same run-time
overhead as the older scheme of compressing globals for stack.

9. COMPRESSION ALGORITHM
Since sections 7 and 8 involve compressing global arrays, a data

compression algorithm is needed. For our situation, a good com-
pression algorithm is one that has the following characteristics.
First, it should compress program data to a high degree, so that
a significant amount of free space is recovered. Second, it should
have a very low or zero persistent memory overhead, which is the

extra book-keeping space, if any, needed by the compression algo-
rithm that persists until de-compression. Persistent storage is unde-
sirable since it reduces the net space freed by compression. Third,
since compression is done at run-time, the sum of the compression
and de-compression times should be small.

We explored the following three compression techniques, all of
which roughly satisfy the above criteria: (i) LZO, a modern im-
plementation of the Lempel-Ziv dictionary-based compression al-
gorithm [29]; (ii) WKdm, which uses a combination of dictionary-
based and statistical methods and is characterized by a very small
dictionary size [34] and (iii) WKS, a modified version of WKdm
that supports in-place compression and de-compression, without
having to copy data to an intermediate buffer [28].

Upon detailed evaluation, we chose WKS because it has (a) no
persistent memory overhead, (b) has the best compression ratio
when tested on global variables, and (c) requires a low number of
cycles for compressing and de-compressing the data. For instance,
we evaluated global data compression in block sizes ranging from
16 bytes to 8 KB. The average amount of space freed up by WKS
is about 60% of the uncompressed space, and compression and de-
compression took an average of 43 cycles per word compressed.
Further details are not presented here for lack of space, but can be
found in a technical report [28].

10. SPACE OVERHEADS OF ROUTINES
This section discusses the main memory space required to run

the added routines for our reuse and compression methods (no
added routines are needed for the optimized scheme of run-time
checks). Space is needed for the following two reasons. First, calls
are made to certain functions such as the Out-of-Heap Function
(sections 5 and 8), the compression and de-compression functions
(sections 7 and 8). Each of these functions requires some space on
the stack. To ensure correct execution, the application cannot wait
until the stack is full to make these calls; instead the application
must make the calls when there is just enough space on the stack
to make these calls, but no more. Their stack space is not wasted
in the final analysis since our overhead routines are exited and their
stack frames are popped off by the time they return to the applica-
tion program, which can thereafter reuse the space. Nevertheless to
limit the pre-mature invocation of our method, special care is taken
in writing our functions to ensure that their stack space is small.

A second source of memory overhead from our schemes is to
store the Reuse Candidate Lists for every region in the same mem-
ory device where program code is stored, which is usually read-
only memory (ROM) in embedded systems. The reuse candidate
lists can be stored in ROM because they are known at compile-
time, and do not change at run-time. Results show that the lists
typically are only a tiny fraction of the program code-size, and do
not significantly change the required code-size.

11. LIVENESS ANALYSIS
Liveness analysis, needed for our reuse schemes for detecting

dead globals, is a well-established dataflow analysis in the compiler
literature [2]. It is always possible even in languages with pointers
by using pointer analysis. The less precise the pointer analysis, the
more conservative the liveness analysis, but it is never wrong.
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Benchmark Source Description Total Data Size (in bytes) Lines of Code
SUSAN MIBench Digital Image Processing 383000 5733

HISTOGRAM UTDSP Image Enhancing Application 17850 634
KS PTRDist Graph Partitioning Tool 31400 2231

JPEG UTDSP Image Encoding and Decoding 169000 18758
SPECTRAL UTDSP Power Spectral Estimation of Speech 3200 1218

LPC UTDSP Linear Predictive Coding Encoder 8000 4377

Table 1: Benchmark programs and characteristics.

A difficulty arises in doing compile-time liveness analysis in sit-
uations when the call-graph for the program is not fully known at
compile-time. There are two situations when the call-graph may
not be known at compile-time. First, in object-oriented languages
when a virtual function is called, the compiler does not usually
know which real function is actually called at run-time. Second, in
imperative languages such as C, first-order functions may prevent
knowledge of the call-graph at compile-time. First-order functions
are those that are assigned to function variables, and called indi-
rectly through those variables, so that the compiler may not know
which function is actually called when a function variable is called.

Fortunately there are technologies that allow liveness analysis
even when the call-graph is not fully known. Liveness analysis in
such situations may not be precise, but is always conservative in
that it never declares a live variable to be dead. For object-oriented
languages, liveness analysis has been investigated in [26]. Restrict-
ing the set of functions a virtual function may call, is possible at
compile-time, in many cases, by using techniques such as [10]
which use type information to narrow down what functions can be
called. Even when the call set cannot be restricted to one, a conser-
vative analysis is possible which considers if a variable can be live
under any of the functions in the restricted set. For imperative lan-
guages such as C, which is the most widely prevalent language in
embedded systems, unknown call-graphs are rare since first-order
functions are rare [13], and hence this problem is mostly absent.

12. RESULTS
This section presents results for the different schemes proposed

in the paper. The proposed techniques have been implemented in
the public-domain GCC cross-compiler targeting the Motorola M-
Core [24] embedded processor. The compiler is modified to auto-
matically determine the program regions and reuse candidates for
each region. Automating the code insertions, however, is not yet
complete and therefore the current implementation involves manu-
ally inserting the required check code into the application sources
at the beginning of functions and at the start of regions. Since the
resulting executable code is exactly the same as what will be pro-
duced by automating the code insertions, manual coding causes no
error of any kind in the results. One of the schemes, namely grow-
ing the stack into heap fragments has not yet been implemented; but
the remaining techniques - safety runtime checks, reusing global
for stack, reusing global for heap, compressing global for stack
and compressing global for heap - have been implemented. Fi-
nally, the compiled applications are executed on the public-domain
cycle-accurate simulator for the Motorola M-Core.

The names, sources and other characteristics of the embedded
benchmarks evaluated are shown in table 1. The benchmarks se-
lected are such that they have at least some global arrays each,
since four out of the five reuse schemes proposed rely on recov-
ering space from global arrays. Owing to the tedious nature of
manually inserting code, the benchmarks chosen are such that they
demonstrate the merits of the technique, without being too large to
modify manually. One benchmark (JPEG) that is not favorable to
our technique is also included.

Benchmark Run-time Increase (%) Code size
Without With Increase(%)

Optimization Optimization (with optim.)
SUSAN 0.8 0.1 0.1

HISTOGRAM 3.5 2.2 0.06
KS 3.8 1.5 0.01

JPEG 2.0 0.2 0.2
SPECTRAL 1.1 0.6 0.1

LPC 3.7 2.2 0.1
Average 2.5 1.1 0.09

Table 2: Overheads for Safety Checks

0

10

20

30

40

50

60

70

80

90

100

SUSAN HIST KS JPEG SPEC LPC

BENCHMARKS

S
P

A
C

E
 R

E
C

O
V

E
R

E
D

 F
O

R
 O

V
E

R
F

L
O

W
 S

T
A

C
K

 O
R

 H
E

A
P

(%
 o

f 
to

ta
l 

s
ta

c
k
 a

n
d

 h
e
a
p

 r
e
q

u
ir

e
m

e
n

t)

COMPRESS GLOBAL FOR STACK

REUSE GLOBAL FOR HEAP

REUSE GLOBAL FOR STACK

Figure 7: Extra space recovered for stack and heap as a fraction of
total stack and heap requirement for each benchmark

Safety Runtime Checks Table 2 shows the overheads due to in-
serting the safety checks alone. The second column reports the run-
time overhead without any optimization, whereas the third column
records the reduced run-time overhead after applying the rolling
check optimization proposed in section 3. The run-time overhead
reduces from 2.5% to 1.1% with optimizations, and the code-size
overhead with optimization is only 0.09%. Recall that the safety
runtime checks is a stand-alone scheme that can be used with or
without the reuse and compression schemes. Results show that
their guaranteed detection of out-of-memory errors, thus allowing
remedial action, is possible with very low overhead.

Reuse and compression benefits Figure 7 shows the improve-
ment resulting from the use of our reuse and compression tech-
niques for each benchmark. Since the goal of the scheme is to en-
hance the reliability of the system by providing additional memory
in case of a space shortage, the improvement numbers on the y-axis
have been expressed as percentages of the total dynamic (stack +
heap) memory requirement of the system. The figure shows that the
improvements range from 0.77%, in the case of JPEG, to 93.5% in
the case of SUSAN. In other words, for SUSAN 93.5% of the max-
imum stack and heap combined usage can be placed in dead global
arrays in case of a memory overflow.
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Benchmark Increase in Run-time (%) Increase in Code-size (with optimization)
Without Optimization With Optimization Due to checks (%) Due to added routines (KB, %)

SUSAN 1.8 0.3 0.2 6.7, 1.5
HISTOGRAM 10.6 6.5 0.2 14.3, 4.0

KS 8.8 3.6 0.06 6.7, 1.7
JPEG 4.6 0.4 0.4 6.7, 2.1

SPECTRAL 3.3 1.9 0.4 6.7, 1.6
LPC 11.1 6.5 0.3 6.7, 1.5

Average 6.7 3.2 0.26 2.07%

Table 3: Overheads for Memory Reuse and Compression Schemes

The above numbers are collected as follows. The program is first
executed with an extremely large stack and heap space in order
to determine the exact stack and heap footprints for a particular
input data-set. Thereafter, the program is re-run with a heap and
stack space that is less than the requirement determined in the first
pass and it is observed whether the program can execute correctly.
This process is repeated several times, with progressively smaller
amounts of dynamic memory, until even the space freed up by our
techniques is not enough to allow the program to run to the end.
In KS, for instance, the program runs to completion even with a
dynamic memory size that was 23% less than the actual dynamic
memory requirement calculated in the first pass.

The significant space recovery shown in figure 7 for several
benchmarks shows the promise of the method in improving sys-
tem reliability. When the program is out of memory, the recov-
ered space can be used to postpone and hopefully avoid a system
crash. In this manner, the techniques improve reliability for a given
memory size, and hence reduce the dollar cost of the system. The
numbers under-estimate the benefits from the technique in two im-
portant ways. First, the implementation of the technique for grow-
ing the stack into free holes in the heap is not yet complete, and
hence its improvements are not counted. Second, numbers can-
not quantify the additional safety and reliability benefits from au-
tomatic detection of out-of-memory errors made possible by our
method, which enables remedial action of various kinds.

The figure 7 also shows the contribution of the different reuse
schemes to the total space recovered for each benchmark. Reusing
globals for stack appears to be the most promising because pre-
dicting the lifetime of stack variables at compile-time is easier than
doing the same for heap variables and also because three out of the
six benchmarks, namely HISTOGRAM, LPC and SPECTRAL, do
not have any heap allocation.

Some additional benchmark specific observations are as follows.
For SUSAN, the space recovered is substantial since it has one 360
KB array which is used only when a specific option is chosen by the
data set. In case a different option is chosen, the array in not used at
all, and is automatically freed for heap usage by our scheme. The
360 KB array referred to above is actually declared on the stack in
the main() procedure, and is retained on the stack throughout the
lifetime of the program. Our compiler implements a simple opti-
mization which promotes all arrays in main() to global variables so
that our method can benefit from them. HISTOGRAM, LPC and
SPECTRAL are selected because each of them uses global arrays
with mutually exclusive lifetimes, thereby presenting opportunities
for benefiting from our techniques. While all space freed up to
the stack in LPC and SPECTRAL are from reuse of dead global
arrays, in HISTOGRAM, one of the arrays in the candidate list is
live throughout, making its reuse impossible. However, the array is
not used throughout and thus, compression is feasible and is auto-
matically invoked. The low improvement in JPEG resulted from it
being extremely heap-intensive and having large heap structures
whose compiler-derived live ranges spanned the entire program.
The small benefit arose from reusing some global space for stack.

Reuse and compression overheads Table 3 shows the increase
in run-time and code-size caused by our reuse techniques. The
increase in run-time is incurred due to the insertion of the reuse
checks. Recall from figure 5 that the reuse code is more expensive
than the safety check since it has two predicates OR-ed together,
and because of the assignment of the Current-Region variable at
the start of regions. Our rolling check and region-merging opti-
mizations however, reduce the run-time increase significantly. The
optimized run-time overhead is 3.2% on average, which is higher
than for the safety checks, but is still low.

Table 3 also shows the increase in code-size in its last two
columns for the optimized case. Code size is increased from two
components - an application-specific part from the inserted run-
time checks, and a fixed part from the same extra handler rou-
tines for our method linked into all applications. The fixed part
is the same for all benchmarks, except HISTOGRAM, for which
it is higher because it also uses compression and de-compression
routines. Table 3 shows that the application-specific increase in
code-size is almost insignificant – only 0.26% on average for our
benchmarks. Table 3 also shows that the fixed code-size increase is
2.07% on average for our benchmarks; this number is expected to
be much smaller for real embedded systems, which typically have
much larger applications than our benchmarks. Further the fixed
size routines in our method have not currently been carefully en-
gineered during their programming to reduce code size; we expect
that programming them carefully will reduce the fixed code-size
overhead further from the already low 2.07% number.

Currently the Reuse Candidate Lists are placed in heap instead of
ROM for implementation convenience, and hence their code-size is
not counted in table 3. We do, however, count their impact in the
earlier experiment in fig. 7, when their space is subtracted from the
space saved and only the net space recovered is reported. When
the candidate lists are placed in ROM, we have computed that their
impact on code-size will be less than 0.5%.

13. CONCLUSION
This paper presents a flexible memory management method for

embedded systems whose main goal is to improve the reliability
of such systems in case of out-of-memory errors. It proposes three
techniques for providing reliability. The first technique is to modify
application code automatically in the compiler to check for all out-
of-memory conditions. Such a system of software-only run-time
checks can be invaluable in embedded systems without memory
protection. This is a stand-alone technique that can be implemented
without the remaining techniques, if desired. The second technique
is to reduce the memory footprint of the program by allowing seg-
ments that are out of memory to grow into non-contiguous free
space in the system, when available. The third technique involves
compressing live data and using the resulting free space to grow
the stack and the heap when they overflow. Results show that the
overhead from the system of run-time checks is very low. The ad-
ditional space recovered by the schemes for reusing dead space and
compressing live data, ranges between 0.7% to 93.5% of the com-
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bined stack and heap size for our benchmarks. In future work, we
wish to explore the opportunities of reusing space across tasks in
multitasking environments.
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